Домой Стены Расширяющаяся вселенная. Расширение вселенной

Расширяющаяся вселенная. Расширение вселенной

Если посмотреть на небо ясной безлунной ночью, то самыми яркими объектами, скорее всего, окажутся планеты Венера, Марс, Юпитер и Сатурн. А еще вы увидите целую россыпь звезд, похожих на наше Солнце, но расположенных намного дальше от нас. Некоторые из этих неподвижных звезд в действительности едва заметно смещаются друг относительно друга при движении Земли вокруг Солнца. Они вовсе не неподвижны! Это происходит, потому что такие звезды находятся сравнительно близко к нам. Вследствие движения Земли вокруг Солнца мы видим эти более близкие звезды на фоне более далеких из различных положений. Тот же самый эффект наблюдается, когда вы едете на машине, а деревья у дороги словно бы изменяют свое положение на фоне ландшафта, уходящего к горизонту (рис. 14). Чем ближе деревья, тем заметнее их видимое движение. Такое изменение относительного положения называется параллаксом. В случае со звездами это настоящая удача для человечества, потому что параллакс позволяет нам непосредственно измерить расстояние до них.

Рис. 14. Звездный параллакс.

Движетесь ли вы по дороге или в космосе, относительное положение ближних и дальних тел изменяется по мере вашего движения. Величина этих изменений может быть использована для определения расстояния между телами.

Самая близкая звезда, Проксима Центавра, удалена от нас примерно на четыре световых года или сорок миллионов миллионов километров. Большинство других звезд, видимых невооруженным глазом, находятся в пределах нескольких сотен световых лет от нас. Для сравнения: от Земли до Солнца всего восемь световых минут! Звезды разбросаны по всему ночному небу, но особенно густо рассыпаны они в полосе, которую мы называем Млечным Путем. Уже в 1750 г. некоторые астрономы высказывали предположение, что вид Млечного Пути можно объяснить, если считать, что большинство видимых звезд собраны в дискообразную конфигурацию, наподобие тех, что мы теперь называем спиральными галактиками. Только через несколько десятилетий английский астроном Уильям Гершель подтвердил справедливость этой идеи, кропотливо подсчитывая число звезд, видимых в телескоп на разных участках неба. Тем не менее полное признание эта идея получила лишь в двадцатом столетии. Теперь мы знаем, что Млечный Путь - наша Галактика - раскинулся от края до края приблизительно на сто тысяч световых лет и медленно вращается; звезды в его спиральных рукавах совершают один оборот вокруг центра Галактики за несколько сотен миллионов лет. Наше Солнце - самая обычная желтая звезда средних размеров - находится у внутреннего края одного из спиральных рукавов. Определенно, мы проделали длинный путь со времен Аристотеля и Птолемея, когда люди считали Землю центром Вселенной.

Современная картина Вселенной начала прорисовываться в 1924 г., когда американский астроном Эдвин Хаббл доказал, что Млечный Путь не единственная галактика. Он открыл, что существует множество других звездных систем, разделенных обширными пустыми пространствами. Чтобы подтвердить это, Хаббл должен был определить расстояние от Земли до других галактик. Но галактики находятся так далеко, что, в отличие от ближайших звезд, действительно выглядят неподвижными. Не имея возможности использовать параллакс для измерения расстояний до галактик, Хаббл вынужден был применить косвенные методы оценки расстояний. Очевидной мерой расстояния до звезды является ее яркость. Но видимая яркость зависит не только от расстояния до звезды, но также и от светимости звезды - количества испускаемого ею света. Тусклая, но близкая к нам звезда затмит самое яркое светило из отдаленной галактики. Поэтому, чтобы использовать видимую яркость в качестве меры расстояния, мы должны знать светимость звезды.

Светимость ближайших звезд можно рассчитать по их видимой яркости, поскольку благодаря параллаксу мы знаем расстояние до них. Хаббл заметил, что близкие звезды можно классифицировать по характеру испускаемого ими света. Звезды одного класса всегда имеют одинаковую светимость. Далее он предположил, что если мы обнаружим звезды этих классов в далекой галактике, то им можно приписать ту же светимость, какую имеют подобные звезды поблизости от нас. Располагая такой информацией, несложно вычислить расстояние до галактики. Если вычисления, проделанные для множества звезд в одной и той же галактике, дают одно и то же расстояние, то можно быть уверенным в правильности нашей оценки. Таким способом Эдвин Хаббл вычислил расстояния до девяти различных галактик.

Сегодня мы знаем, что звезды, видимые невооруженным глазом, составляют ничтожную долю всех звезд. Мы видим на небе примерно 5000 звезд - всего лишь около 0,0001% от числа всех звезд нашей Галактики, Млечного Пути. А Млечный Путь - лишь одна из более чем сотни миллиардов галактик, которые можно наблюдать в современные телескопы. И каждая галактика содержит порядка сотни миллиардов звезд. Если бы звезда была крупинкой соли, все звезды, видимые невооруженным глазом, уместились бы в чайной ложке, однако звезды всей Вселенной составили бы шар диаметром более тринадцати километров.

Звезды настолько далеки от нас, что кажутся светящимися точками. Мы не можем различить их размер или форму. Но, как заметил Хаббл, есть много различных типов звезд, и мы можем различать их по цвету испускаемого ими излучения. Ньютон обнаружил, что, если солнечный свет пропустить через трехгранную стеклянную призму, он разложится на составляющие цвета, подобно радуге (рис. 15). Относительная интенсивность различных цветов в излучении, испускаемом неким источником света, называется его спектром. Фокусируя телескоп на отдельной звезде или галактике, можно исследовать спектр испускаемого ими света.

Рис. 15. Звездный спектр.

Анализируя спектр излучения звезды, можно определить как ее температуру, так и состав атмосферы.

В числе прочего излучение тела позволяет судить о его температуре. В 1860 г. немецкий физик Густав Кирхгоф установил, что любое материальное тело, например звезда, будучи нагретым, испускает свет или другое излучение, подобно тому как светятся раскаленные угли. Свечение нагретых тел обусловлено тепловым движением атомов внутри них. Это называется излучением черного тела (несмотря на то что сами нагретые тела не являются черными). Спектр чернотельного излучения трудно с чем нибудь перепутать: он имеет характерный вид, который изменяется с температурой тела (рис. 16). Поэтому излучение нагретого тела подобно показаниям термометра. Наблюдаемый нами спектр излучения различных звезд всегда похож на излучение черного тела, это своего рода извещение о температуре звезды.

Рис. 16. Спектр излучения черного тела.

Все тела - а не только звезды - испускают излучение вследствие теплового движения составляющих их микроскопических частиц. Распределение излучения по частоте характеризует температуру тела.

Если внимательно изучить звездный свет, он сообщит нам еще больше информации. Мы обнаружим отсутствие некоторых строго определенных цветов, причем у разных звезд они будут разными. И поскольку мы знаем, что каждый химический элемент поглощает характерный для него набор цветов, то, сравнивая эти цвета с теми, что отсутствуют в спектре звезды, мы сможем точно определить, какие элементы присутствуют в ее атмосфере.

В 1920 е гг., когда астрономы начали изучать спектры звезд в других галактиках, было обнаружено нечто очень интересное: это оказались те же самые характерные наборы отсутствующих цветов, что и у звезд в нашей собственной галактике, но все они были смещены к красному концу спектра, причем в одинаковой пропорции. Физикам смещение цвета или частоты известно как эффект Доплера.

Мы все знакомы с тем, как это явление воздействует на звук. Прислушайтесь к звуку проезжающего мимо вас автомобиля. Когда он приближается, звук его двигателя или гудка кажется выше, а когда машина уже проехала мимо и стала удаляться, звук понижается. Полицейский автомобиль, едущий к нам со скоростью сто километров в час, развивает примерно десятую долю скорости звука. Звук его сирены представляет собой волну, чередование гребней и впадин. Напомним, что расстояние между ближайшими гребнями (или впадинами) называется длиной волны. Чем меньше длина волны, тем большее число колебаний достигает нашего уха каждую секунду и тем выше тон, или частота, звука.

Эффект Доплера вызван тем, что приближающийся автомобиль, испуская каждый следующий гребень звуковой волны, будет находиться все ближе к нам, и в результате расстояния между гребнями окажутся меньше, чем если бы машина стояла на месте. Это означает, что длины приходящих к нам волн становятся меньше, а их частота - выше (рис. 17). И наоборот, если автомобиль удаляется, длина улавливаемых нами волн становится больше, а их частота - ниже. И чем быстрее перемещается автомобиль, тем сильнее проявляется эффект Доплера, что позволяет использовать его для измерения скорости.

Рис. 17. Эффект Доплера.

Когда источник, испускающий волны, движется по направлению к наблюдателю, длина волн уменьшается. При удалении источника она, напротив, увеличивается. Это и называют эффектом Доплера.

Свет и радиоволны ведут себя подобным же образом. Полиция использует эффект Доплера для определения скорости автомобилей путем измерения длины волны отраженного от них радиосигнала. Свет представляет собой колебания, или волны, электромагнитного поля. Как мы отмечали в гл. 5, длина волны видимого света чрезвычайно мала - от сорока до восьмидесяти миллионных долей метра.

Человеческий глаз воспринимает световые волны разной длины как различные цвета, причем наибольшую длину имеют волны, соответствующие красному концу спектра, а наименьшую - относящиеся к синему концу. Теперь представьте себе источник света, находящийся на постоянном расстоянии от нас, например звезду, испускающую световые волны определенной длины. Длина регистрируемых волн будет такой же, как у испускаемых. Но предположим теперь, что источник света начал отдаляться от нас. Как и в случае со звуком, это приведет к увеличению длины волны света, а значит, спектр сместится в сторону красного конца.

Доказав существование других галактик, Хаббл в последующие годы занимался определением расстояний до них и наблюдением их спектров. В то время многие предполагали, что галактики движутся беспорядочно, и ожидали, что число спектров, смещенных в синюю сторону, будет примерно таким же, как число смещенных в красную. Поэтому полной неожиданностью стало открытие того, что спектры большинства галактик демонстрируют красное смещение - почти все звездные системы удаляются от нас! Еще более удивительным оказался факт, обнаруженный Хабблом и обнародованный в 1929 г.: величина красного смещения галактик не случайна, а прямо пропорциональна их удаленности от нас. Другими словами, чем дальше от нас галактика, тем быстрее она удаляется! Отсюда вытекало, что Вселенная не может быть статичной, неизменной в размерах, как считалось ранее. В действительности она расширяется: расстояние между галактиками постоянно растет.

Осознание того, что Вселенная расширяется, произвело настоящую революцию в умах, одну из величайших в двадцатом столетии. Когда оглядываешься назад, может показаться удивительным, что никто не додумался до этого раньше. Ньютон и другие великие умы должны были понять, что статическая Вселенная была бы нестабильна. Даже если в некоторый момент она оказалась бы неподвижной, взаимное притяжение звезд и галактик быстро привело бы к ее сжатию. Даже если бы Вселенная относительно медленно расширялась, гравитация в конечном счете положила бы конец ее расширению и вызвала бы сжатие. Однако, если скорость расширения Вселенной больше некоторой критической отметки, гравитация никогда не сможет его остановить и Вселенная продолжит расширяться вечно.

Здесь просматривается отдаленное сходство с ракетой, поднимающейся с поверхности Земли. При относительно низкой скорости тяготение в конце концов остановит ракету и она начнет падать на Землю. С другой стороны, если скорость ракеты выше критической (больше 11,2 километра в секунду), тяготение не может удержать ее и она навсегда покидает Землю.

Исходя из теории тяготения Ньютона такое поведение Вселенной могло быть предсказано в любой момент в девятнадцатом или восемнадцатом веке и даже в конце семнадцатого столетия. Однако вера в статическую Вселенную была столь сильна, что заблуждение сохраняло власть над умами до начала двадцатого столетия. Даже Эйнштейн был настолько уверен в статичности Вселенной, что в 1915 г. внес специальную поправку в общую теорию относительности, искусственно добавив в уравнения особый член, получивший название космологической постоянной, который обеспечивал статичность Вселенной.
Космологическая постоянная проявлялась как действие некой новой силы - «антигравитации», которая, в отличие от других сил, не имела никакого определенного источника, а просто была неотъемлемым свойством, присущим самой ткани пространства времени. Под влиянием этой силы пространство время обнаруживало врожденную тенденцию к расширению. Подбирая величину космологической постоянной, Эйнштейн мог варьировать силу данной тенденции. С ее помощью он сумел в точности уравновесить взаимное притяжение всей существующей материи и получить в результате статическую Вселенную.
Позже Эйнштейн отверг идею космологической постоянной, признав ее своей «самой большой ошибкой». Как мы скоро убедимся, сегодня есть причины полагать, что в конце концов Эйнштейн мог все же быть прав, вводя космологическую постоянную. Но Эйнштейна, должно быть, более всего удручало то, что он позволил своей вере в неподвижную Вселенную перечеркнуть вывод о том, что Вселенная должна расширяться, предсказанный его же собственной теорией. Кажется, только один человек разглядел это следствие общей теории относительности и принял его всерьез. Пока Эйнштейн и другие физики искали, как избежать нестатичности Вселенной, российский физик и математик Александр Фридман, наоборот, настаивал на том, что она расширяется.

Фридман сделал относительно Вселенной два очень простых предположения: что она одинаково выглядит, в каком бы направлении мы ни смотрели, и что данное положение верно, независимо от того, из какой точки Вселенной мы смотрим. Опираясь на эти две идеи и решив уравнения общей теории относительности, он доказал, что Вселенная не может быть статической. Таким образом, в 1922 г., за несколько лет до открытия Эдвина Хаббла, Фридман в точности предсказал расширение Вселенной!

Предположение, что Вселенная выглядит одинаково в любом направлении, не совсем соответствует действительности. Например, как мы уже знаем, звезды нашей Галактики формируют на ночном небе отчетливую светлую полосу - Млечный Путь. Но если мы посмотрим на отдаленные галактики, похоже, их число будет более или менее равным во всех частях неба. Так что Вселенная выглядит примерно одинаково в любом направлении, если наблюдать ее в крупном масштабе по сравнению с расстояниями между галактиками и игнорировать различия в малых масштабах.

Представьте себе, что вы в лесу, где деревья растут беспорядочно. Посмотрев в одном направлении, вы увидите ближайшее дерево в метре от себя. В другом направлении самое близкое дерево обнаружится на расстоянии трех метров. В третьем вы увидите сразу несколько деревьев в одном, двух и трех метрах от себя. Непохоже, будто лес выглядит одинаково в любом направлении. Но если принять во внимание все деревья в радиусе километра, такого рода различия усреднятся и вы увидите, что лес одинаков по всем направлениям (рис. 18).

Рис. 18. Изотропный лес.

Даже если распределение деревьев в лесу в целом равномерно, при ближайшем рассмотрении может оказаться, что они местами растут гуще. Так же и Вселенная не выглядит одинаковой в ближайшем к нам космическом пространстве, тогда как при увеличении масштаба мы наблюдаем одинаковую картину, в каком бы направлении ни вели наблюдение.

Долгое время однородное распределение звезд служило достаточным основанием для принятия фридмановской модели в качестве первого приближения к реальной картине Вселенной. Но позднее счастливый случай обнаружил еще одно подтверждение того, что предположение Фридмана удивительно точно описывает Вселенную. В 1965 г. два американских физика, Арно Пензиас и Роберт Вильсон из «Белл телефон лабораторис» в Нью Джерси, отлаживали очень чувствительный микроволновый приемник. (Микроволнами называют излучение с длиной волны около сантиметра.) Пензиаса и Вильсона беспокоило, что приемник регистрировал больший уровень шума, чем ожидалось. Они обнаружили на антенне птичий помет и устранили другие потенциальные причины сбоев, но скоро исчерпали все возможные источники помех. Шум отличался тем, что регистрировался круглые сутки в течение всего года независимо от вращения Земли вокруг своей оси и ее обращения вокруг Солнца. Так как движение Земли направляло приемник в различные сектора космоса, Пензиас и Вильсон заключили, что шум приходит из за пределов Солнечной системы и даже из за пределов Галактики. Казалось, он шел в равной мере со всех сторон космоса. Теперь мы знаем, что, куда бы ни был направлен приемник, этот шум остается постоянным, не считая ничтожно малых вариаций. Так Пензиас и Вильсон случайно наткнулись на поразительный пример, подкрепляющий первую гипотезу Фридмана о том, что Вселенная одинакова во всех направлениях.

Каково происхождение этого космического фонового шума? Примерно в то же время, когда Пензиас и Вильсон исследовали загадочный шум в приемнике, два американских физика из Принстонского университета, Боб Дик и Джим Пиблс, тоже заинтересовались микроволнами. Они изучали предположение Георгия (Джорджа) Гамова (в прошлом студента Александра Фридмана) о том, что на ранних стадиях развития Вселенная была очень плотной и добела раскаленной. Дик и Пиблс полагали, что если это правда, то мы должны иметь возможность наблюдать свечение ранней Вселенной, поскольку свет от очень далеких областей нашего мира приходит к нам только сейчас. Однако вследствие расширения Вселенной этот свет должен быть столь сильно смещен в красный конец спектра, что превратится из видимого излучения в микроволновое. Дик и Пиблс как раз готовились к поискам этого излучения, когда Пензиас и Вильсон, услышав об их работе, поняли, что уже нашли его. За эту находку Пензиас и Вильсон были в 1978 г. удостоены Нобелевской премии (что кажется несколько несправедливым в отношении Дика и Пиблса, не говоря уже о Гамове).

На первый взгляд тот факт, что Вселенная выглядит одинаково в любом направлении, свидетельствует о том, что мы занимаем в ней какое то особенное место. В частности, может показаться, что раз все галактики удаляются от нас, то мы должны находиться в центре Вселенной. Есть, однако, другое объяснение этого феномена: Вселенная может выглядеть одинаково во всех направлениях также и при взгляде из любой другой галактики. Если помните, именно в этом и состояло второе предположение Фридмана.

Мы не располагаем никакими научными аргументами за или против второй гипотезы Фридмана. Столетия назад христианская церковь признала бы его еретическим, так как церковная доктрина постулировала, что мы занимаем особое место в центре мироздания. Но сегодня мы принимаем это предположение Фридмана по едва ли не противоположной причине, из своего рода скромности: нам показалось бы совершенно удивительным, если бы Вселенная выглядела одинаково во всех направлениях только для нас, но не для других наблюдателей во Вселенной!

Во фридмановской модели Вселенной все галактики удаляются друг от друга. Это напоминает расползание цветных пятен на поверхности надуваемого воздушного шара. С ростом размеров шара увеличиваются и расстояния между любыми двумя пятнами, но при этом ни одно из пятен нельзя считать центром расширения. Более того, если радиус воздушного шара постоянно растет, то чем дальше друг от друга находятся пятна на его поверхности, тем быстрее они будут удаляться при расширении. Допустим, что радиус воздушного шара удваивается каждую секунду. Тогда два пятна, разделенные первоначально расстоянием в один сантиметр, через секунду окажутся уже на расстоянии двух сантиметров друг от друга (если измерять вдоль поверхности воздушного шара), так что их относительная скорость составит один сантиметр в секунду. С другой стороны, пара пятен, которые были отделены десятью сантиметрами, через секунду после начала расширения разойдутся на двадцать сантиметров, так что их относительная скорость будет десять сантиметров в секунду (рис. 19). Точно так же в модели Фридмана скорость, с которой любые две галактики удаляются друг от друга, пропорциональна расстоянию между ними. Тем самым модель предсказывает, что красное смещение галактики должно быть прямо пропорционально ее удаленности от нас - это та самая зависимость, которую позднее обнаружил Хаббл. Хотя Фридману удалось предложить удачную модель и предвосхитить результаты наблюдений Хаббла, его работа оставалась почти неизвестной на Западе, пока в 1935 г. аналогичная модель не была предложена американским физиком Говардом Робертсоном и британским математиком Артуром Уокером уже по следам открытого Хабблом расширения Вселенной.

Рис. 19. Расширяющаяся Вселенная воздушного шара.

Вследствие расширения Вселенной галактики удаляются друг от друга. С течением времени расстояние между далекими звездными островами увеличивается сильнее, чем между близкими галактиками, подобно тому как это происходит с пятнами на раздувающемся воздушном шаре. Поэтому наблюдателю из любой галактики скорость удаления другой галактики кажется тем больше, чем дальше она расположена.

Фридман предложил только одну модель Вселенной. Но при сделанных им предположениях уравнения Эйнштейна допускают три класса решений, то есть существует три разных типа фридмановских моделей и три различных сценария развития Вселенной.

Первый класс решений (тот, который нашел Фридман) предполагает, что расширение Вселенной происходит достаточно медленно, так что притяжение между галактиками постепенно замедляет и в конечном счете останавливает его. После этого галактики начинают сближаться, а Вселенная - сжиматься. В соответствии со вторым классом решений Вселенная расширяется настолько быстро, что гравитация лишь немного замедлит разбегание галактик, но никогда не сможет остановить его. Наконец, есть третье решение, согласно которому Вселенная расширяется как раз с такой скоростью, чтобы только избежать схлопывания. Со временем скорость разлета галактик становится все меньше и меньше, но никогда не достигает нуля.

Удивительная особенность первой модели Фридмана - то, что в ней Вселенная не бесконечна в пространстве, но при этом нигде в пространстве нет никаких границ. Гравитация настолько сильна, что пространство свернуто и замыкается на себя. Это до некоторой степени схоже с поверхностью Земли, которая тоже конечна, но не имеет границ. Если двигаться по поверхности Земли в определенном направлении, то никогда не натолкнешься на непреодолимый барьер или край света, но в конце концов вернешься туда, откуда начал путь. В первой модели Фридмана пространство устроено точно так же, но в трех измерениях, а не в двух, как в случае поверхности Земли. Идея о том, что можно обогнуть Вселенную и вернуться к исходной точке, хороша для научной фантастики, но не имеет практического значения, поскольку, как можно доказать, Вселенная сожмется в точку прежде, чем путешественник вернется в к началу своего пути. Вселенная настолько велика, что нужно двигаться быстрее света, чтобы успеть закончить странствие там, где вы его начали, а такие скорости запрещены (теорией относительности. - Перев.). Во второй модели Фридмана пространство также искривлено, но иным образом. И только в третьей модели крупномасштабная геометрия Вселенной плоская (хотя пространство искривляется в окрестности массивных тел).

Какая из моделей Фридмана описывает нашу Вселенную? Остановится ли когда нибудь расширение Вселенной, и сменится ли оно сжатием, или Вселенная будет расширяться вечно?

Оказалось, что ответить на этот вопрос труднее, чем поначалу представлялось ученым. Его решение зависит главным образом от двух вещей - наблюдаемой ныне скорости расширения Вселенной и ее сегодняшней средней плотности (количества материи, приходящегося на единицу объема пространства). Чем выше текущая скорость расширения, тем б о льшая гравитация, а значит, и плотность вещества, требуется, чтобы остановить расширение. Если средняя плотность выше некоторого критического значения (определяемого скоростью расширения), то гравитационное притяжение материи сможет остановить расширение Вселенной и заставить ее сжиматься. Такое поведение Вселенной отвечает первой модели Фридмана. Если средняя плотность меньше критического значения, тогда гравитационное притяжение не остановит расширения и Вселенная будет расширяться вечно - как во второй фридмановской модели. Наконец, если средняя плотность Вселенной в точности равна критическому значению, расширение Вселенной будет вечно замедляться, все ближе подходя к статическому состоянию, но никогда не достигая его. Этот сценарий соответствует третьей модели Фридмана.

Так какая же модель верна? Мы можем определить нынешние темпы расширения Вселенной, если измерим скорость удаления от нас других галактик, используя эффект Доплера. Это можно сделать очень точно. Однако расстояния до галактик известны не очень хорошо, поскольку мы можем измерять их только косвенно. Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет. Еще более расплывчаты наши знания о нынешней средней плотности Вселенной. Так, если мы сложим массы всех видимых звезд в нашей и других галактиках, сумма будет меньше сотой доли того, что требуется для остановки расширения Вселенной, даже при самой низкой оценке скорости расширения.

Но это далеко не все. Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути. Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики. Кроме того, большинство галактик входят в состав скоплений, и мы можем аналогичным образом сделать вывод о присутствии темной материи между галактиками в этих скоплениях по ее влиянию на движение галактик. Фактически количество темной материи во Вселенной значительно превышает количество обычного вещества. Если учесть всю темную материю, мы получим приблизительно десятую часть от той массы, которая необходима для остановки расширения.

Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить.

(В одном из новых нейтринных экспериментов используется подземный резервуар, заполненный 50 тысячами тонн воды.) Считается, что нейтрино невесомы и поэтому не вызывают гравитационного притяжения.

Однако исследования нескольких последних лет свидетельствуют, что нейтрино все же обладает ничтожно малой массой, которую ранее не удавалось зафиксировать. Если нейтрино имеют массу, они могли бы быть одной из форм темной материи. Тем не менее, даже с учетом такой темной материи, во Вселенной, похоже, гораздо меньше вещества, чем необходимо для остановки ее расширения. До недавнего времени большинство физиков сходилось на том, что ближе всего к реальности вторая модель Фридмана.

Но затем появились новые наблюдения. За последние несколько лет разные группы исследователей изучали мельчайшую рябь того микроволнового фона, который обнаружили Пензиас и Вильсон. Размер этой ряби может служить индикатором крупномасштабной структуры Вселенной. Ее характер, похоже, указывает, что Вселенная все таки плоская (как в третьей модели Фридмана)! Но поскольку суммарного количества обычной и темной материи для этого недостаточно, физики постулировали существование другой, пока не обнаруженной, субстанции - темной энергии.

И словно для того, чтобы еще больше усложнить проблему, недавние наблюдения показали, что расширение Вселенной не замедляется, аускоряется. Вопреки всем моделям Фридмана! Это очень странно, поскольку присутствие в пространстве вещества - высокой или низкой плотности - может только замедлять расширение. Ведь гравитация всегда действует как сила притяжения. Ускорение космологического расширения - это все равно что бомба, которая собирает, а не рассеивает энергию после взрыва. Какая сила ответственна за ускоряющееся расширение космоса? Ни у кого нет надежного ответа на этот вопрос. Однако, возможно, Эйнштейн все таки был прав, когда ввел в свои уравнения космологическую постоянную (и соответствующий ей эффект антигравитации).

С развитием новых технологий и появлением превосходных космических телескопов мы стали то и дело узнавать о Вселенной удивительные вещи. И вот хорошая новость: теперь нам известно, что Вселенная продолжит в ближайшее время расширяться с постоянно возрастающей скоростью, а время обещает длиться вечно, по крайней мере для тех, кому хватит благоразумия не угодить в черную дыру. Но что же было в самые первые мгновения? Как начиналась Вселенная, и что заставило ее расширяться?

Мироздание не статично. Это подтвердили исследования астронома Эдвина Хаббла еще в 1929 году, то есть почти 90 лет назад. На эту мысль его навели наблюдения за движением галактик. Еще одним открытием астрофизиков в завершение двадцатого века стало вычисление расширения Вселенной с ускорением.

Как называют расширение Вселенной

Некоторые удивляются, услышав, как ученые называют расширение Вселенной. Это наименование у большинства связано с экономикой, причем с негативными ожиданиями.

Инфляция - это процесс расширения Вселенной сразу после её появления, причем с резким ускорением. В переводе с английского «инфляция» - «накачивать», «раздувать».

Новые сомнения о существовании темной энергии как фактора теории инфляции Вселенной используют противники теории расширения.

Тогда ученые предложили карту черных дыр. Первоначальные данные отличаются от тех, что были получены на позднем этапе:

  1. Шестьдесят тысяч черных дыр с расстоянием между самыми дальними больше одиннадцати миллионов световых лет - данные четырехлетней давности.
  2. Сто восемьдесят тысяч галактик с черными дырами с удалением в тринадцать миллионов световых лет. Данные, полученные учеными, в том числе российскими ядерными физиками, в начале 2017 года.

Эти сведения, говорят астрофизики, не противоречат классической модели Вселенной.

Скорость расширения Вселенной - задача для космологов

Скорость расширения действительно является задачей для космологов и астрономов. Правда, о том, что скорость расширения Вселенной не имеет постоянного параметра, космологи больше не спорят, расхождения перешли в другую плоскость - когда расширение начало ускоряться. Данные о кочевании в спектре очень далеких сверхновых галактик первого типа доказывают, что расширение - это не внезапно наступивший процесс.

Ученые считают, что первые пять миллиардов лет Вселенная сужалась.

Первые последствия Большого Взрыва сначала спровоцировали мощное расширение, а потом началось сжатие. Но темная энергия все-таки повлияла на рост мироздания. Причем с ускорением.

Американские ученые приступили к созданию карты размеров Вселенной для разных эпох, чтобы выяснить, когда началось ускорение. Наблюдая взрывы сверхновых, а также направление концентрации в древних галактиках, космологи заметили особенности ускорения.

Почему Вселенная «разгоняется»

Изначально подразумевалось, что в составленной карте значения ускорения не были линейны, а превратились в синусоиду. Ее назвали «волной Вселенной».

Волна Вселенной говорит о том, что ускорение не шло с постоянной скоростью: оно то замедлялось, то ускорялось. Причем несколько раз. Ученые считают, что было семь таких процессов за 13,81 миллиарда лет после Большого Взрыва.

Однако космологи пока не могут ответить на вопрос о том, от чего зависит ускорение-замедление. Предположения сводятся к мысли, что энергетическое поле, от которого берет начало темная энергия, подчинено волне Вселенной. И, переходя от одного положения к другому, Вселенная то расширяет ускорение, то замедляет его.

Несмотря на убедительность доводов, они все-таки остаются пока теорией. Астрофизики надеются, что информация орбитального телескопа «Планк» подтвердит существование волны Вселенной.

Когда нашли темную энергию

Впервые о ней заговорили в девяностые из-за взрывов сверхновых. Природа темной энергии неизвестна. Хотя еще Альберт Эйнштейн выделил космическую постоянную в своей теории относительности.

В 1916 году, сто лет назад, Вселенная еще считалась неизменной. Но сила притяжения вмешалась: космические массы неизменно бы ударились друг от друга, если бы Вселенная была недвижима. Эйнштейн объявляет гравитацию за счет космической силы отталкивания.

Жорж Леметр обоснует это через физику. Вакуум содержит энергию. Из-за её колебаний, приводящих к появлению частиц и дальнейшего их разрушения, энергия приобретает силу отталкивания.

Когда Хаббл доказал расширение Вселенной, Эйнштейн назвал чушью.

Влияние темной энергии

Мироздание раздвигается с постоянной скоростью. В 1998 году миру представили данные анализа вспышек сверхновых первого типа. Было доказано, что Вселенная разрастается все быстрее.

Происходит это из-за непознанного вещества, её прозвали «темной энергией». Выяснится, что она занимает почти 70 % пространства Вселенной. Суть, свойства и природа темной энергии не изучены, но её ученые пытаются выяснить, имелась ли она в других галактиках.

В 2016 году вычислили точную скорость расширения на ближайшее будущее, но появилось несовпадение: Вселенная расширяется с большей скоростью, чем ранее предположили астрофизики. В среде ученых разгорелись споры о существовании темной энергии и её влиянии на скорость расширения пределов мироздания.

Расширение Вселенной происходит без темной энергии

Теорию независимости процесса расширения Вселенной от темной энергии выдвинули ученые в начале 2017 года. Расширение они объясняют изменением структуры Вселенной.

Ученые из Будапештского и Гавайского университетов пришли к выводу, что несовпадение расчетов и реальной скорости расширения связаны с изменением свойств пространства. Никто не учитывал, что происходит с моделью Вселенной при расширении.

Усомнившись в существовании темной энергии, ученые объясняют: самые большие концентраты материи Вселенной влияют на её расширение. При этом остальное содержание распределяется равномерно. Однако факт остается неучтенным.

Для демонстрации обоснованности своих предположений ученые предложили модель мини-Вселенной. Они представили её в форме набора пузырьков и начали просчет параметров роста каждого пузырька с собственной скоростью, зависящей от его массы.

Такое моделирование Вселенной показало ученым, что она может изменяться без учета энергии. А если «примешать» темную энергию, то модель не изменится, считают ученые.

В общем-то, споры все еще продолжаются. Сторонники темной энергии говорят, что она влияет на расширение границ Вселенной, противники стоят на своем, утверждая, что значение имеет концентрация материи.

Скорость расширения Вселенной сейчас

Ученые убеждены, что расти Вселенная начала после Большого Взрыва. Тогда, почти четырнадцать миллиардов лет назад, оказалось, что скорость расширения Вселенной больше скорости света. И она продолжает расти.

В книге Стивена Хокинга и Леонарда Млодинова «Кратчайшая история времени» отмечается, что скорость расширения границ Вселенной не может превышать 10 % за миллиард лет.

Чтобы определить, какова скорость расширения Вселенной, летом 2016 года лауреат Нобелевской премии Адам Рисс рассчитал расстояние до пульсирующих цефеид в близких друг к другу галактиках. Эти данные позволили вычислить скорость. Выяснилось, что галактики на расстоянии не меньше трех миллионов световых лет могут отдаляться со скоростью почти 73 км/с.

Результат был удивителен: орбитальные телескопы, тот же «Планк», говорили о 69 км/с. Почему зафиксирована такая разница, ученые не в силах дать ответ: им ничего не известно о происхождении темной материи, на которую опирается теория расширения Вселенной.

Темная радиация

Еще один фактор «разгона» Вселенной обнаружили астрономы с помощью «Хаббла». Темное излучение, как предполагают, появилось в самом начале образования Вселенной. Тогда больше в ней было энергии, а не материи.

Темное излучение «помогло» темной энергии расширить границы Вселенной. Расхождения в определении скорости ускорения были из-за неизвестности этого излучения, считают ученые.

Дальнейшая работа «Хаббла» должна сделать наблюдения более точными.

Таинственная энергия может уничтожить Вселенную

Такой сценарий ученые рассматривают уже несколько десятилетий, данные космической обсерватории «Планк» говорят, что это далеко не только предположения. Их опубликовали в 2013 году.

«Планк» замерил «эхо» Большого взрыва, появившееся в возрасте Вселенной около 380 тысяч лет, температура составила 2 700 градусов. Причем температура менялась. «Планк» определил и «состав» Вселенной:

  • почти 5 % - звезды, космическая пыль, космический газ, галактики;
  • почти 27 % - масса темной материи;
  • около 70 % - темная энергия.

Физик Роберт Колдуэл предположил, что темная энергия обладает силой, способной нарастать. И эта энергия разъединит пространство-время. Галактика будет отдаляться в ближайшие двадцать-пятьдесят миллиардов лет, считает ученый. Этот процесс будет происходить при нарастающем расширении границ Вселенной. Это оторвет Млечный Путь от звезды, и он тоже распадется.

Космосу отмерили около шестидесяти миллионов лет. Солнце станет карликовой гаснущей звездой, и от нее отделятся планеты. После взорвется Земля. В следующие тридцать минут пространство разорвет атомы. Финалом станет разрушение структуры пространство-время.

Куда «улетает» Млечный Путь

Иерусалимские астрономы убеждены, что Млечный Путь набрал максимальную скорость, которая выше скорости расширения Вселенной. Ученые объясняют это стремлением Млечного Пути к «Великому Аттрактору», считающемуся самым крупным Так Млечный Путь уходит из космической пустыни.

Ученые используют разные методики измерения скорости расширения Вселенной, поэтому нет единого результата этого параметра.

Создано: 25.10.2013 , 10010 46

"Он сотворил землю силою Своею, утвердил вселенную мудростью Своею и разумом Своим распростер небеса "

Иеремия 10:12

В процессе развития науки многие ученые начали искать возможность исключить Бога из своих взглядов как Первопричину появления вселенной. В результате этого появилось много различных теорий возникновения вселенной, а также появления и развития живых организмов. Самыми популярными из них являются теория «Большого взрыва» и теория «Эволюции». В процессе обоснования теории «Большого взрыва» была создана одна из фундаментальных теорий эволюционистов - «Расширяющаяся вселенная». Данная теория говорит о том, что происходит расширение космического пространства в масштабах вселенной, которое наблюдается благодаря постепенному отдалению галактик одной от другой.

Давайте рассмотрим аргументы, которыми некоторые ученые пытаются доказать данную теорию. Ученые эволюционисты, в частности Стивен Хокинг, считают, что расширяющаяся вселенная является результатом Большого взрыва и что после взрыва было быстрое расширение вселенной, а потом оно замедлилось и сейчас это расширение медленное, но этот процесс продолжается. Они аргументируют это измерением скорости отдаления других галактик от нашей галактики с помощью эффекта Доплера, а также тем, что им известна скорость в процентном отношении, о чем Стивен Хокинг говорит: «Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет.» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38). Однако здесь возникают вопросы: как данное процентное отношение было получено, а также кто и каким образом проводил данное исследование? Этого Стивен Хокинг не объясняет, но говорит об этом как о факте. Исследовав данный вопрос, мы получили информацию, что на сегодняшний день для измерения скорости отдаления галактик используют закон Хаббла, использующий теорию о «Красном смещении», которое в свою очередь основывается на Эффекте Доплера. Давайте посмотрим, что собой представляют данные понятия:

Закон Хаббла - закон, связывающий красное смещение галактик и расстояние до них линейным образом. Данный закон имеет вид: cz = H 0 D, где z - красное смещение галактики; H 0 - коэффициент пропорциональности, называемый "постоянная Хаббла"; D - расстояние до галактики. Одним из важнейших элементов для закона Хаббла является скорость света.

Красное смещение - сдвиг спектральных линий химических элементов в красную сторону. Есть мнение, что это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией, но чаще всего берется во внимание эффект Доплера. Это проще выражается тем, что чем дальше галактика, тем больше ее свет смещается в красную сторону.

Эффект Доплера - изменение частоты и длинны звуковых волн, регистрируемых приёмником, вызванное движением их источника в результате движения приёмника. Проще говоря, чем ближе объект, тем больше частота звуковых волн и наоборот чем дальше объект, тем меньше частота звуковых волн.

Однако существует ряд проблем с данными принципами измерения скорости отдаления галактик. Для закона Хаббла является проблемой оценка «постоянной Хаббла», так как помимо скорости отдаления галактик, они обладают еще собственной скоростью, что приводит к тому, что закон Хаббла плохо выполняется, или совсем не выполняется для объектов, находящихся на расстоянии ближе 10-15 млн. световых лет. Закон Хаббла плохо выполняется также для галактик на очень больших расстояниях (в миллиарды св. лет), которым соответствует величина красного смещения больше 1. Расстояния до объектов с таким большим красным смещением теряют однозначность, поскольку зависят от принимаемой модели Вселенной и от того, к какому моменту времени они отнесены. В качестве меры расстояния в этом случае обычно используется только красное смещение. Таким образом, получается, что определить скорость отдаления далеких галактик практически является невозможным и определяется только той моделью вселенной, которую принимает исследователь. Это говорит о том, что каждый верит в свою субъективную скорость отдаления галактик.

Также нужно сказать, что невозможно измерить расстояние к дальним галактикам относительно их сияния или красного смещения. Этому мешают некоторые факты, а именно, что скорость света не постоянная и изменяется, причем эти изменения идут в сторону замедления. В 1987 году в отчете Станфордского научно-исследовательского института австралийские математики Тревор Норман и Барри Сеттерфилд постулировали, что в прошлом произошло большое снижение скорости света (B. Setterfield, The Velocity of Light and the Age of the Universe .). В1987 году нижегородский физик-теоретик В.С. Троицкий постулировал, что со временем произошло громадное снижение скорости света. Доктор Троицкий говорил о снижении скорости света в 10 миллионов раз по сравнению с ее нынешним значением (V.S. Troitskii, Physical Constants and Evolution of the Universe , Astrophysics and Space Science 139(1987): 389-411.). В 1998 году физики-теоретики лондонского Импириал-колледжа Альбрехт и Жоао Магейжу также постулировали уменьшение скорости света. 15 ноября 1998 года газета «Лондон таймс» напечатала статью «Скорость света – самая высокая во вселенной – снижается» (The speed of light - the fastest thing in the universe - is getting slower , The London Times, Nov. 15, 1998.). Относительно этого нужно сказать, что на скорость света влияет много факторов, например, химические элементы через которые проходит свет, а также температура, которую они имеют, потому как через одни элементы свет проходит медленней, а через другие намного быстрее, что и было доказано экспериментально. Так 18 февраля 1999 года в весьма уважаемом (и на 100% эволюционистском) научном журнале «Nature» была опубликована научная статья с подробным описанием эксперимента, в котором скорость света удалось уменьшить до 17 метров в секунду, то есть до каких-то 60 километров в час. Это значит, что за ним можно было наблюдать как за едущим по улице автомобилем. Этот эксперимент был поставлен датским физиком Лене Хау и международной группой ученых из Гарвардского и Стенфордского университетов. Они пропускали свет через пары натрия, охлажденные до невероятно низких температур, измеряемых нанокельвинами (то есть, миллиардными долями кельвина; это практически абсолютный ноль, который по определению равен -273,160C). В зависимости от точной температуры паров скорость света была снижена до значений в интервале 117 км/час – 61 км/час; то есть, по существу, до 1/20.000.000-ной от обычной скорости света (L.V. Hau, S.E. Harris, Science News, March 27, p. 207, 1999.).

В июле 2000 года ученые из исследовательского института NEC в Прингстоне сообщили об ускорении ими света до скорости, превышающей скорость света! Их эксперимент был опубликован в британском журнале «Nature». Они направили лазерный луч на стеклянную камеру, содержащую пары цезия. В результате энергетического обмена между фотонами лазерного луча и атомами цезия возник луч, скорость которого на выходе из камеры была выше скорости входного луча. Считается, что свет распространяется с максимальной скоростью в вакууме, где отсутствует сопротивление, и медленнее в любой другой среде из-за дополнительного сопротивления. Например, всем известно, что в воде свет распространяется медленнее, чем в воздухе. В описанном выше эксперименте полученныйлуч вышел из камеры с парами цезия еще до того, как полностью вошел в нее. Эта разница была очень интересной. Лазерный луч перепрыгнул на 18 метров вперед от того места, где должен был быть. По идее, это можно было расценить как следствие, предшествующее причине, но это не совсем верно. Существует и научная область, изучающая сверхсветовое распространение импульсов. Правильная интерпретация этого исследования такова: скорость света непостоянна, и свет можно ускорить подобно любому другому физическому объекту во вселенной при наличии нужных условий и подходящего источника энергии. Ученые получили вещество из энергии без потерь; ускорили свет до скорости, превышающей ныне принятую скорость света.

Относительно красног о смещения нужно сказать, что никто с точностью не может сказать причину появления красного смещения и сколько раз преломляется свет, доходя до земли, а это в свою очередь делает нелепой основу для измерения расстояний с помощью красного смещения. Также изменение скорости света опровергает все существующие предположения расстояния к дальним галактикам и нивелирует метод измерения данного расстояния по красному смещению. Еще нужно сказать, что применение эффекта Доплера к свету является чисто теоретическим, а учитывая, что скорость света меняется, то это вдвойне усложняет применение данного эффекта к свету. Все это говорит, что метод определения расстояния к дальним галактикам по красному смещению и тем более аргументирование того, что вселенная расширяется, просто являются не научным подходом и обманом. Давайте подумаем, даже если нам будет известна скорость отдаления галактик, то невозможно утверждать, что происходит расширение пространства вселенной. Никто не может сказать, происходит ли вообще подобное расширение. Движение планет и галактик во вселенной не говорит об изменении самого пространства, а ведь согласно теории Большого взрыва пространство появилось в результате большого взрыва и расширяется. Это утверждение не является научным, так как никто не нашел край вселенной и тем более не измерил расстояние до него.

Исследуя теорию "Большого взрыва" мы наталкиваемся на еще одно не исследованное и недоказанное явление, но о котором говорят как о факте, а именно о «черной материи». Посмотрим, что об этом говорит Стивен Хокинг: «Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути. Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38). Мы хотим подчеркнуть, что о «черной материи» говорится так: «которую мы не можем наблюдать непосредственно», это свидетельствует о том, что фактов существования данной материи нет, но непонятное для эволюционистов поведение галактик во вселенной заставляет их верить в существование чего-то, но сами не знают чего. Интересным также представляется утверждение: «фактически количество темной материи во Вселенной значительно превышает количество обычного вещества» . Данное утверждение говорит о количестве «темной материи», но возникает вопрос, как и каким методом, это количество определили в условиях, когда невозможно наблюдать и исследовать данную «материю»? Можно сказать, что было взято неизвестно что и получено количество этого, непонятно каким образом. То, что ученым непонятно как звезды спиральных галактик держатся на своей орбите, при высокой скорости, не означает существование призрачной «материи», которую никто не видел и не мог непосредственно наблюдать.

Современная наука находится в невыгодном положении относительно своих фантазий о большом взрыве. Так заключением в размышлениях о существовании различных материй Стивен Хокинг говорит: «Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38) . Это показывает всю беспомощность современной науки в попытке доказать, что вселенная возникла сама по себе без Творца. Если частицы не найдены, тогда нельзя на этом строить научные доводы, так как вероятность, что другие формы материи не существуют больше чем вероятность их существования.

Как бы там ни было, движение галактик, планет и других космических тел не говорит о расширении пространства вселенной, так как подобное движение не имеет ничего общего с определением расширения пространства. Например, если в одной комнате находится два человека и один отдаляется от другого, то это не говорит о том, что комната расширяется, а говорит о том, что есть пространство, в котором возможно двигаться. Аналогично и в данной ситуации, происходит движение галактик в космическом пространстве, однако это не говорит об изменении космического пространства. Также абсолютно невозможно доказать, что самые далекие галактики находятся на краю вселенной и за ними нет еще каких-либо галактик, а это в свою очередь говорит о том, что край вселенной не найден.

Таким образом, у нас есть все факты для утверждения, что на сегодняшний день не существует доказательств расширения вселенной, а это в свою очередь подтверждает несостоятельность теории "Большого взрыва".

Вселенная расширяется. Но в некотором смысле расширение пока непосредственно не наблюдается: теоретики строят различные модели, позволяющие описать его, но мы не видим, как космические объекты в реальном времени становятся всё дальше и дальше.

Необходимо значительно увеличить точность наблюдений, а с существующей техникой нам придётся ждать века или по крайней мере десятилетия, чтобы накопить данные, иллюстрирующие этот процесс.

Для построения модели, демонстрирующей расширение Вселенной, обычно сравнивают расширяющуюся Вселенную с надувающимся воздушным шаром. При этом мы допускаем, что вся "область наблюдения" доступна нам целиком и в одно мгновение. На самом деле, чем более далёкую галактику мы наблюдаем, тем больше времени нужно её свету для того, чтобы попасть на сетчатку нашего глаза. Следовательно, в момент испускания этого света галактика как бы находилась на поверхности "менее надутого" шара. Самые далёкие из наблюдаемых нами галактик видны в те времена, когда "шарик" был совсем маленьким. Таким образом, вследствие конечности скорости света мы видим сильно искажённую картину окружающего нас мира.

Особенностью этой модели расширяющейся Вселенной является как бы некий "взгляд со стороны". Мы как бы смотрим из "лишнего" измерения, да ещё вдобавок видим всё сразу, наблюдая процессы по единым "космическим часам", то есть разом охватываем всю Вселенную, получая информацию с бесконечной скоростью. Этот "взгляд бога" недоступен обычному наблюдателю.

Мы находимся на Земле, внутри Вселенной. Сигналы приходят к нам с конечной скоростью - со скоростью света. Поэтому мы видим удалённые объекты такими, какими они были в далёком прошлом. В астрономии красное смещение - сдвиг спектра в красную сторону. Это явление может быть выражением эффекта Доплера, гравитационного красного смещения или их комбинаций. В смещение линий в галактических спектрах вносит вклад как космологическое красное смещение, вызванное расширением пространства Вселенной, так и красное (или фиолетовое) смещение, связанное с эффектом Доплера вследствие собственного движения галактик.

После открытия красного смещения в спектрах удалённых галактик предположили, что оно вызвано чем-то вроде "утомления от долгой поездки": некий неизвестный процесс вынуждает фотоны терять энергию по мере удаления от источника света и поэтому "краснеть".

Но эта гипотеза не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. У сверхновых типа 1а, используемых для определения расстояний до галактик, угасание длится примерно две недели. За этот период времени излучается определённое количество фотонов. Гипотеза "усталости" говорит, что за время пути они потеряют энергию, но наблюдатель всё равно увидит поток фотонов длительностью в две недели. В расширяющемся же пространстве "растягиваются" не только сами фотоны (за счёт чего они теряют энергию), но и их поток. Поэтому, чтобы все они "добрались" до Земли, требуется более двух недель.

В космологии две проблемы с расстоянием: всё расположено очень далеко друг от друга и быстро движется. Пока свет дойдёт от источника до наблюдателя, их удалённость сильно изменится. При этом расстояние до объектов "прямо сейчас" не поддается прямому измерению, так как эта процедура занимает конечное (и, вообще говоря, довольно большое) время, связанное с распространением сигнала: мы просто не видим далёкие объекты такими, каковы они в данный момент. Это всё усложняет, поскольку, пользуясь бытовым опытом, мы привыкли представлять себе всё "таким, какое оно сейчас". В космологии расстояния и скорости "прямо сейчас" мы можем только рассчитать в рамках определённой модели или же получить их каким-то "окольным путём", но не с помощью современных методов наблюдения.

Поскольку Вселенная расширяется, её наблюдаемая область сейчас имеет радиус больше 14 млрд световых лет. Пока свет путешествует, пространство, которое он пересекает, расширяется. К моменту, когда он достигает нас, расстояние до испустившей его галактики становится больше, чем просто вычисленное по времени "путешествия" фотонов (приблизительно второе).

Многие люди помнят события вчерашнего дня лучше, чем позавчерашнего, а недельной давности - вообще не помнят. Зато некоторые воспоминания детства и юности для них сияют, как будто всё это случилось вчера. Если мы возьмём галактику типа нашей, то окажется, что вплоть до некоторого расстояния (а, глядя на далёкие объекты, мы смотрим в прошлое!) она будет выглядеть всё меньше и меньше. Но потом - о чудо! - видимый размер начнёт увеличиваться. Это происходит потому, что свет наблюдаемой галактики был испущен в эпоху молодости Вселенной, когда мы находились гораздо ближе. Соответственно, угловое расстояние до далёких объектов меняется таким же причудливым образом. Угол между лучами света не меняется при распространении в "плоской" вселенной. Поэтому угловое расстояние до космического объекта зависит только от того, как далеко он находился в момент излучения.

Собственное расстояние - физическое расстояние между объектами. Оно изменяется в соответствии с расширением Вселенной. Расстояние, о котором обычно говорится во всех статьях, новостях, равно пути света, пройденному от источник с момента излучения. Оно примерно равно собственному на сравнительно небольших расстояниях, где за время распространения сигнала Вселенная не успела заметно расшириться. Сопутствующие координаты привязаны к координатной сетке, расширяющейся вместе с расширением Вселенной. Относительно неё положение объектов остаётся неизменным, при этом собственные расстояния между ними увеличиваются в соответствии с изменением масштабного фактора. Важно, что угловое расстояние равно собственному расстоянию в момент испускания излучения.

До сих пор горизонт поднимался как "линия, где земля сходится с небом". По мере совершенствования наших представлений о Вселенной в лексиконе ученых начали появляться всё новые и новые "горизонты", достичь которые не представляется возможным (хотя бы потому, что максимально возможная скорость в нашем мире ограничена скоростью света). Горизонт частиц - расширяющаяся сфера, радиус которой определяется расстоянием до самого далёкого источника, в принципе наблюдаемого в данный момент времени (речь идёт о собственном расстоянии до объекта в момент приёма фотона, а не в момент излучения). Такой горизонт нельзя определить как скорость света, умноженную на время после начала расширения, так как, пока фотон летит, вселенная расширяется. Но если мы говорим о частицах как о галактиках, которые возникли в какой-то не слишком ранний момент эволюции вселенной, то такой горизонт будет и в ускоряющихся моделях. Есть он и в нашей Вселенной. Расстояние до горизонта событий - это расстояние (в настоящий момент) до частицы, до которой может дойти наш световой сигнал, посланный прямо сейчас. Мы наблюдаем галактики на красном смещении около 1,8. Свет от таких галактик идёт к нам 10 млрд лет.

В момент излучения они находились от нас в 5,7 млрд световых лет (собственное расстояние на момент излучения). Сейчас до них 16,1 млрд световых лет (собственное расстояние в данный момент), и сигнал, посланный нами к ним, никогда их не достигнет, если динамика Вселенной в будущем принципиально не изменится. И наоборот, мы никогда не увидим события, происходящие в них сейчас.

Получается, что расстояние до горизонта событий соответствует расстоянию до таких галактик в данный момент, но мы-то видим их сейчас такими, какими они были в далёком прошлом! В этом смысле мы не увидим горизонт событий, но можем сказать, что его положение соответствует современному положению галактик, наблюдаемых нами на красном смещении 1,8. Согласно закону Хаббла, скорость удаления далёких объектов прямо пропорциональна расстояниям до них. Здесь речь идёт о скорости изменения собственного расстояния в настоящий момент.

Расстояние, на котором скорость удаления равняется световой, называется "сферой Хаббла". Есть источники, которые и в момент излучения, и в настоящий момент находятся за её пределами, то есть их скорость убегания выше световой и тогда, и сейчас.

В современной космологической модели (с вкладом тёмной энергии около 70%) все наблюдаемые источники с красным смещением, превышающим примерно 1,5, в настоящий момент удаляются от нас быстрее скорости света. То есть относительные скорости точек, находящихся друг от друга на больших расстояниях, не ограничиваются скоростями света.

В гипотетической стационарной вселенной с началом во времени горизонт частиц, представляет собой сферу, расширяющуюся со скоростью света. Если через 5 млрд лет после "сотворения" этого мира в какой-нибудь из галактик появится наблюдатель, для него этот горизонт частиц окажется сферой радиусом в 5 млрд световых лет. Ещё через миллиард лет её радиус составит 6 млрд световых лет и т.д.

Представим себе первый фотон, излученный в "момент ноль". К его скорости движения, равной скорости света, добавляется ещё скорость расширения пространства. За время существования Вселенной этот фотон удалился от места его испускания на расстояние 46 млрд световых лет (примерно 13,7 млрд световых лет он пролетел "самостоятельно", остальное - за счёт расширения Вселенной). Таким образом, без учёта скорости расширения ему понадобилось бы 46 млрд лет для преодоления такого расстояния. Реликтовое излучение возникло, когда Вселенной было 380 тыс. лет. Сопутствующее красное смещение равно 1089. Сегодня собственное расстояние до источника, испустившего это излучение, - почти 46 млрд световых лет.

Наблюдатель может видеть лишь конечную часть своего мира. Нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Если пространство и дальше будет расширяться с ускорением, то и в сколь угодно отдалённом будущем нельзя будет проверить, как выглядит Вселенная за горизонтом частиц. А наши телескопы не могут "заглянуть" в эпоху, когда космическое пространство было заполнено плазмой и не содержало свободных фотонов.

По материалу Сергея Попова и Алексея Топоренского подготовил Сергей РЯБОШАПКО, г. Самара

НА ГЛАВНУЮ

Звездное небо над головой долгое время было для человека символом вечности. Лишь в Новое время люди осознали, что «неподвижные» звезды на самом деле движутся, причем с огромными скоростями. В ХХ в. человечество свыклось с еще более странным фактом: расстояния между звездными системами – галактиками, не связанными друг с другом силами тяготения, постоянно увеличиваются.

И дело здесь не в природе галактик: сама Вселенная расширяется! Естествознанию пришлось расстаться с одним из своих основополагающих принципов: все вещи меняются в этом мире, но мир в целом всегда одинаков. Это можно считать важнейшим научным событием ХХ в.

Все началось, когда Альберт Эйнштейн создал общую теорию относительности. В ее уроках описаны фундаментальные свойства материи, пространства и времени. («относительный» по-латыни звучит как relativus, поэтому теории основанные на теории относительности Эйнштейна, называются релятивистскими).

Применив свою теорию ко Вселенной как целой системе, Эйнштейн обнаружил, что такого решения, которому соответствовала бы не меняющаяся со временем Вселенная, не получается. Этот не удовлетворил великого ученого.

Чтобы добиться стационарного решения своих уравнений, Эйнштейн ввел в них дополнительное слагаемое – так называемый ламбда-член. Однако до сих пор никто не смог найти какого-либо физического обоснования этого дополнительного члена.

В начале 20-х годов советский математик А. А. Фридман решил для Вселенной уравнения общей теории относительности, не накладывая условия стационарности. Он доказал, что могут существовать два состояния для Вселенной: расширяющийся мир и сжимающийся мир. Полученные Фридманом уравнения используют для описания эволюции Вселенной и в настоящее время.

Все эти теоретические рассуждения никак не связывались учеными с реальным миром, пока в 1929 г. американский астроном Эдвин Хаббл не подтвердил расширения видимой части Вселенной. Он использовал при этом эффект Доплера. Линии в спектре движущегося источника смещаются на величину, пропорциональную скорости его приближения или удаления, поэтому скорость галактики всегда можно вычислить по изменению положения ее спектральных линий.

Еще во втором десятилетии ХХ в. американский астроном Весто Слайфер, исследовав спектры нескольких галактик, заметил, что у большинства из них спектральные линии смещены в красную сторону. Это означало, что они удаляются от нашей Галактики со скоростями в сотни километров в секунду.

Хаббл определил расстояние до небольшого числа галактик и их скорости. Из его наблюдений следовало, что чем дальше находится галактика, тем с большей скоростью она от нас удаляется. Закон, по которому скорость удаления пропорциональна расстоянию, получил название закона Хаббла.

Означает ли это, что наша Галактика является центром, от которого и идет расширение? С точки зрения астрономов, такое невозможно. Наблюдатель в любой точке Вселенной должен увидеть ту же картину: все галактики имели бы красные смещения, пропорциональные расстояния до них. Само пространство как бы раздувается.

Вселенная расширяется, но уентр расширения отсутствует: из любого места картина расширения будет представляться той же самой.

Если на воздушном шарике нарисовать галактики, и начать надувать его, то расстояния между ними будут возрастать, причем тем быстрее, чем дальше они расположены друг от друга и разница лишь в том, что нарисованные галактики сами увеличиваются в размерах, реальные же звездные системы повсюду во Вселенной сохраняют свой объем. Это объясняется тем, что составляющие их звезды связаны между собой силами гравитации.

Факт постоянного расширения Вселенной установлен твердо. Самые далекие из известных галактик и квазаров имеют такое большое красное смещение, что длины волн всех линий в спектрах оказываются больше, чем у близких источников в 5 – 6 раз!

Но если Вселенная расширяется, то сегодня мы видим ее не такой, какой она была в прошлом. Миллиарды лет назад галактики располагались значительно ближе друг к другу. Еще раньше отдельных галактик просто не могло существовать, а еще ближе к началу расширения не могло быть даже звезд. Эта эпоха – начало расширения Вселенной – удалена от нас на 12 – 15 млрд лет.

Оценки возраста галактик пока слишком приближенны, чтобы уточнить эти цифры. Но надежно установлено, что самые старые звезды различных галактик имеют примерно одинаковый возраст. Следовательно, большинство звездных систем возникло в тот период, когда плотность вещества во Вселенной была значительно выше современной.

На начальной стадии все существо Вселенной имело настолько высокую плотность, что ее даже невозможно было себе представить. Идею о расширении Вселенной из сверхплотного состояния ввел в 1927 г. бельгийский астроном Жорж Леметр, а предложение, что первоначальное вещество было очень горячим, впервые высказал Георгий Антонович Гамов в 1946 г. Впоследствии эту гипотезу подтвердило открытие так называемого реликтового излучения. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим Взрывом. Но остается множество вопросов. Что привело к образованию ныне наблюдаемой Вселенной, к началу Взрыва? Почему пространство имеет три измерения, а время одно? Как в стремительно расширяющейся Вселенной смогли появиться стационарные объекты – звезды и галактики? Что было до начала Большого Взрыва? Над поисками ответов на эти и другие вопросы работают современные астрономы и физики.



Новое на сайте

>

Самое популярное