Домой Проекты домов Определение подвижности бетонной смеси. Подвижность бетона: разбавление водой

Определение подвижности бетонной смеси. Подвижность бетона: разбавление водой

Бетон является очень сложной системой, в которой на протяжении всего срока эксплуатации происходит внутри множество химических процессов.

Подвижность бетонной смеси — как определять?

В наше время существует много видов бетона, с различными свойствами под конкретные конструкции и условия эксплуатации. При организации работ по бетонированию важно знать такое свойство бетона, как удобоукладываемость.

Удобоукладываемость бетонной смеси – это способность бетона при бетонировании заполнять форму, опалубку под воздействием собственного веса или приложенной внешней силы (вибрация, уплотнение).

Удобоукладываемость бетонной смеси определяется подвижностью бетонной смеси (П) или осадкой конуса (ОК, S). Подвижность бетонной смеси определяют по методике ДСТУ Б В.2.7-114-2002, где определяется осадка конуса ОК (S), см. Для испытания бетонной смеси применяют стандартные конусы (фото 2 ) в зависимости от фракции крупного заполнителя:

  • при фракции щебня не более 70 мм — 300×200×100 мм (H×D×d);
  • при фракции щебня более 70 мм — 450×300×150 мм (H×D×d),

где H – высота конуса; D – нижний диаметр конуса; d – верхний диаметр конуса.

Суть определения осадки конуса сводится к тому, что приготовленная бетонная смесь засыпается в усеченный стандартный конус в три этапа с уплотнением штыковкой (обычно кусок гладкой стержневой арматуры). Выравнивают верхнюю поверхность конуса, убирая остатки бетонной смеси, а затем поднимают вертикально форму и ставят возле образовавшегося конуса. Разность высот между формой и смесью и является значением осадки конуса.

На основании ДСТУ Б В.2.7-176:2008 все бетонные смеси в зависимости от консистенции разделяют на следующие марки (табл. 1 )

Таблица 1. Марка бетонной смеси по консистенции

Марка бетонной смеси по жесткости
Марка Осадка конуса, мм
S1 10…40
S2 50…90
S3 100…150
S4 160…210
S5 220
Марка бетонной смеси по жесткости (метод Vebe )
Марка Время, с
V0 31
V1 30…21
V2 20…11
V3 10…6
V4 5…3

Также консистенцию бетонной смеси можно определить следующими терминам:

  • жесткая бетонная смесь: ОК от 0…1 см;
  • малоподвижная бетонная смесь: ОК от 1…5 см;
  • подвижная бетонная смесь: ОК от 6…14 см;
  • литая бетонная смесь: ОК более 15 см.

По таблице 1 видно, что самая густая бетонная смесь обладает такими показателями: S1, V0. Самая жидкая бетонная смесь имеет такие марки: S4 или S5, V4. Жесткие смеси S2, S3 применяют для бетонирования строительных объектов при помощи вибрации и уплотнения.

Если не применять уплотнители и вибраторы, тогда в жестких смесях образуются пустоты, нарушающие целостность и монолитность конструкции и тем же самим снижающие прочность, фото 4 .

Подвижность бетонной смеси зависит от множества факторов:

  • вид цемента;
  • количество воды;
  • водо-цементное отношение (В/Ц);
  • отсутствие или присутствие добавок;
  • вид примененных добавок;
  • качество и форма заполнителей;
  • крупность заполнителей (мелкий и крупный).

Как выбрать нужную подвижность бетонной смеси?

Самый главный фактор, отвечающий за свойства бетона является водоцементное соотношение (В/Ц). Поэтому, бетонную смесь категорически недопустимо разбавлять водой для предания ей повышенной подвижности. Прочность бетона на прямую зависит от водоцементного соотношения В/Ц. Если нарушается В/Ц добавлением воды в бетонную смесь – нарушаются основные характеристики бетона. В таком случае прочность бетона может снизиться на несколько классов, например с класса по прочности С40 может получиться С30.

Существует такое мнение, что бетон с высокой подвижностью обладает лучшей прочность. Бетон марок S4, S5 по консистенции будет дороже бетона с маркой S1, но это не означает, что он прочнее. Класс прочности бетона с осадкой конуса S1, S2, S3, S4, S5 будет одинаковый, но расход цемента будет разный, что и определяет цену бетона. Для более подвижных бетонных смесей необходимо расходовать большее количество цемента, чем для менее подвижной, чтобы обеспечить одинаковою прочность бетона. Таким образом, не стоит заказывать для бетонирования открытой площадки или плиты бетон с подвижностью S5, там где есть возможность с помощью вибраторов уплотнить бетонную смесь – это лишние необоснованные затраты денежных средств.

Если вдруг случилось так, что привезли на строительную площадку бетонную смесь ниже требуемой подвижности, ее можно повысить с помощью добавок-пластификаторов. Добавление пластификаторов существенно не снизит прочность бетона. При бетонировании зимой при отрицательных температурах необходимо использовать противоморозные добавки, которые могут обеспечить необходимую подвижность до 6 часов.

В табл. 2 приведены рациональная область применения бетонной смеси разной подвижности для разных строительных нужд.

Таблица 2. Область применения бетонной смеси в зависимости от подвижности

Марка бетонной смеси по осадке конуса Осадка конуса, мм Область применения
S1 10…40 Для монолитных конструкций, бетонирования стен, неармированных или редко армированных конструкций, массивные фундаменты (ОК – 30…60 мм)
S2 50…90 Для стандартного монолитного строительства, для плит, ригелей, колон, густоармированных конструкций, бетонные набивные сваи (ОК – 40…50 мм)
S3 100…150
S4 160…210 Используется для бетонирования конструкций с малым поперечным сечением, густоармированные элементы, труднодоступные места, колоны, при бетонировании с помощью бетононасоса, можно не применять вибратор
S5 220

При расчете состава бетона для определения нужного количества воды при заданной подвижности можно воспользоваться следующими графиками, рис. 1.

Рис. 1. График водопотребности пластичной (а) и жесткой, (б) бетонной смеси, изготовленной с применением портландцемента, песка средней крупности (водопотребность 7%) и гравия наибольшей крупности: 1 – 70 мм; 2 – 40 мм; 3 – 20 мм; 4 – 10 мм

Больше всего в строительстве используют осадку конуса для описания консистенции бетонной смеси. Но в отдельных случаях пользуются такой характеристикой, как жесткость бетонной смеси.

Жесткость бетонной смеси (Ж) определяется, как время вибрации в секундах, необходимое для измерения и уплотнение предварительно сформированного конуса бетонной смеси с использованием прибора для определения жесткости (прибор типа Vebe) – рис. 2 . Эта характеристика более точно отображает свойство жестких или малоподвижных смесей и встречается в строительстве.

Рис. 2. Определение жесткости бетонной смеси: І – прибор типа Vebe; ІІ – бетонная смесь на приборе до вибрации; ІІ – бетонная смесь на приборе после вибрации; 1 – цилиндрическое кольцо, 2 – усеченный конус, 3 – воронка, 4 – штатив, 5 – диск с 6 отверстиями, 6 – штанга, 7 – вибростол

Конев Александр Анатольевич

Применение бетонных растворов в промышленном и индивидуальном строительстве происходит в разных условиях, поэтому и параметры состава отличны для каждого случая. Технические и эксплуатационные качества растворов на основе бетона, такие, как текучесть и подвижность, оказывают прямое влияние на прочностные и временны́е характеристики конструкций.

Определение подвижности

На рисунке выше поясняется, как можно определить текучесть по состоянию раствора с применением конуса:

  1. а – вид конуса;
  2. б – жесткий раствор;
  3. в – малоподвижный;
  4. г – подвижная смесь;
  5. д – очень подвижный раствор;
  6. е – литой.

Такое исследование визуально способно показать, как бетон будет распределяться в опалубке при выбранной технологии трамбовки с параллельным формированием однородной и плотной структуры. Такие параметры называют удобоукладываемостью бетонного раствора, которая оценивается значениями вязкости, пластичности и жёсткости, и определяют ее согласно методикам, регламентированным ГОСТ 10181-2000. Из рисунка понятно, что текучесть бетона выглядит как осадка конуса и означает способность растекания раствора под собственным весом и силами тяжести. Растекание является основным свойством, которое влияет на допуск материала к строительству того или иного объекта.

На рисунке показано общее устройство оборудования для исследований текучести:

Рисунок «а» – определение усадки по подвижности смеси при помощи конуса:

  1. 1 – металлическая воронка;
  2. 2 – металлический конус;
  3. 3 – подставка;
  4. 4 – измерительная линейка.

Рисунок «б» – как определить пластичность бетона по жесткости при помощи технического вискозиметра:

  1. I – исследовательское оборудование;
  2. II – бетон до уплотнения вибрацией;
  3. III после уплотнения вибрацией;
  4. 1 – стальное кольцо;
  5. 2 – образцовый конус;
  6. 3 – лейка;
  7. 4 – держатель;
  8. 5 – металлическая пластина с отверстиями;
  9. 6 – штатив;
  10. 7 – площадка виброуплотнителя.

Технологически при использовании бетонной смеси разной вязкости подвижные бетоны классифицируются согласно ГОСТ по уровням текучести. Текучая смесь быстрее и плотнее заполняет армированную форму опалубки со сложной геометрией. Также бетон в жидком состоянии подразделяется на высокоподвижный и малоподвижный. Малоподвижный раствор – это стандартная смесь без добавления пластификаторов, которая укладывается без уплотнения. Подвижный же состоит из некоторого количества пластификаторов или готовится с добавлением нескольких синтетических компонентов, обеспечивающих высокую текучесть смеси.
График прочности

Удобоукладываемость бетона отражается в следующей классификации (таблица удобоукладываемости):

Марка Удобоукладываемость по параметрам:
Жесткость Подвижность
осадка конуса Расплывание конуса
Сверхжесткий раствор
СЖ-3 ≥ 100
СЖ-2 51-100
СЖ-1 ≤ 50
Жесткий раствор
Ж-4 31-60
Ж-3 21-30
Ж-2 11-20
Ж-1 5-10
Подвижный раствор
П-1 ≤ 4 1-4
П-2 5-9
П-3 10-15
П-4 16-20 26-30
П-5 ≥ 21 ≥ 31

Расслаиваемость тяжелого и легкого бетона указана в таблице ниже:

Марка смеси Коэффициент расслаиваемости в %, ≤
Влагоотделение Бетоноотделение
Тяжелый бетон Легкий бетон
СЖ-3 – СЖ-1 ≤ 0,1 2,0 3,0
Ж-4 – Ж-1 ≤ 0,2 3,0 4,0
П-1 – П-2 ≤ 0,4 3,0 4,0
П-3 – П-5 ≤ 0,8 4,0 6,0

Подвижность бетонной смеси не только отличается заполняемостью формы, но и зависит от пропорций связующих веществ, качества и количества компонентов, марки портландцемента, плотности состава, объема воды и пластификаторов, зернистости наполнителей (щебня, гравия, песка, извести). В последнюю очередь на текучесть влияет технология заливки раствора в форму опалубки.

При заливке смеси в опалубку с плотным наполнением арматурой нужно готовить раствор с повышенной текучестью, так как утрамбовать такой бетон вибраторами, даже глубинными, будет невозможно. Если текучесть будет ниже рекомендуемой, то в конструкции обязательно образуются поры и раковины, что уменьшит прочность объекта.

Обозначения бетонных смесей

Характеристика подвижности обозначается буквой «П» с цифровым продолжением, указывающим на ее степень. Более высокая марка означает лучшую текучесть смеси. Например, малоподвижный бетон п3 или п4 имеют более высокую текучесть.

Бетон П1 имеет наименьшую текучесть, поэтому в промышленном и индивидуальном строительстве используется нечасто. Марки П2 и П3 имеют стандартные характеристики и используются практически повсеместно. Бетонная смесь П4 используется при плотном армировании конструкций и не требует дополнительного виброуплотнения. Марка П5 готовится для использования в герметичных формах из-за самой высокой текучести.
Физико-механические характеристики

Определение подвижности

Для исследования и определения подвижности используют разные способы – и простые, и сложные, отличающиеся точностью конечных результатов. Метод осадки конуса считается самым быстрым и заключается в усадке смеси под собственным весом за определенный промежуток времени в конкретных условиях. При осадке конуса применяют конусообразную форму с размерами, варьирующимися в зависимости от фракции заполнителя.

С расширенной стороны конуса за три приема закладывается бетонный раствор, каждый слой уплотняется вручную протыканием (штыкованием) железным прутом Ø 3-5 мм. После уплотнения конус переворачивают для того, чтобы раствор выпал (вытек) на поддон. Через некоторое время, необходимое для усадки смеси, проверяют значение текучести методом расчета уменьшения высоты бетонной пирамиды по отношения к верхнему торцу конуса. Такое исследование проводится несколько раз, полученные данные отображаются как среднее арифметическое всех попыток.
Лабораторное определение текучести

Если между результатами нет разницы, это означает, что смесь имеет максимально возможную жесткость. Если разница составляет ≤ 150 мм, то смесь считается малоподвижной. При разнице в высоте конусов ≥ 150 мм раствор определяется как максимально подвижный.

Следующий распространенный способ – исследования при помощи вискозиметра, которые проводятся на смесях с заполнителем средней зернистости (фракции 4-5 мм). Конус заполняется раствором и устанавливается на виброплиту. В смесь вставляется держатель с линейными делениями, на него крепится металлический диск с отверстиями. Одновременно с виброплитой включается хронометр и засекается отрезок времени, в течение которого бетонный раствор от вибрирования основания опустится по штативу до фиксируемой отметки. Время нужно умножить на коэффициент 0,45 – это и будет значением подвижности.

Еще один способ – исследования в специальных формах. Для таких испытаний берется стальной куб, открытый с одной стороны, в который загружают раствор бетона и устанавливают на вибрационное основание. Также засекается время заполнения раствором всех углов куба, а результат умножается на коэффициент 0,7. Итог – подвижность бетонного состава.
Исследования текучести на вискозиметре

Так как подобных исследований проводится масса, их результаты приведены в определенную систему и отражены в соответствующих таблицах и сводных документах. Например, следуя данным таблицы ниже, усадка ≤ 50 мм означает, что бетон марки П-1 жесткий. При усадке конуса в пределах 50-150 мм бетон относят к малоподвижным составам, которые рекомендуется использовать для строительства фундаментов промышленных и частных строений. Более высокие марки подвижности (до П-5) обладают усадкой конуса ≥ 150 мм и используются в герметичных опалубках специализированных объектов.

Состав и подвижность раствора

Показатели подвижности обеспечивает такое вещество, как песок, а также портландцемент, вода и заполнители – щебень, известь, гравий и т.д. Но подвижность определяют пропорции добавленных компонентов и их качество, а их нарушение может привести к снижению усадки, уменьшению или увеличению деформационных характеристик и несущей способности.
Таблица подвижности

Водоцементное соотношение считается главной характеристикой в определении текучести бетона, и ее нарушение в ту или иную сторону может снизить прочность конструкции в несколько раз. Оптимальным по ГОСТ считается отношение воды к цементу 0,4.

Чрезмерное добавление воды только визуально повышает текучесть раствора, который через определенный промежуток времени начинает расслаиваться, что означает нарушение структуры смеси и снижение прочности конструкции. Пропорции составляющих определяют способность бетона к удержанию жидкости, а подвижность раствора регулируется именно добавленным объемом воды. В малоподвижных растворах, которые имеют более низкую стоимость, воды добавляют меньше, поэтому их необходимо дополнительно трамбовать.

Цель работы : Определение подвижности растворной смеси.

Теоретические положения

Подвижность растворной смеси – это способность легко растекаться по поверхности камня тонким слоем и заполнять все неровности основания. Степень подвижности растворной смеси определяют с помощью прибора по глубине погружения в растворную смесь стального эталонного конуса.

Определение подвижности растворной смеси

Описание оборудования : 1. Прибор для определений подвижности растворной смеси.

Порядок выполнения работы:

Прибор для определения подвижности растворной смеси (рис. 28) состоит из штатива, на стойке 6которого закреплены держатели 7. На конце нижнего держателя имеется зажимной винт 3 , удерживающий скользящий стержень 5 конуса 2 . К держателям прикреплена шкала с делениями 4, по которой отсчитывают глубины погружения конуса в растворную смесь и объем погруженной части конуса. Масса конуса со стержнем 5 и балластом должна быть 300 г, высота конуса – 145 мм, диаметр основания – 75 мм. Сосуд 1 для растворной смеси изготовлен из листовой стали в виде усеченного конуса.

Для определения подвижности раствора сосуд 1 наполняют смесью примерно на 1 см ниже его краев. Уложенный раствор штыкуют 25 раз стержнем диаметром 10 ¸ 12 мм и встряхивают 5 ¸ 6 раз легким постукиванием сосуда об стол. Острие конуса приводят в соприкосновение с поверхностью раствора в сосуде и закрепляют стержень в таком положении зажимным винтом 3 , отмечая при этом положение стрелки на шкале. Затем поворачивают зажимной винт, предоставляя конусу свободно погружаться в раствор и по окончании конуса записывают второй отчет по шкале. Глубину погружения конуса в раствор в сантиметрах определяют как разность между вторым и первым отсчетами. Значение подвижности раствора в сантиметрах вычисляют как среднее арифметическое результатов двух испытаний.

Рабочую подвижность в летних и зимних условиях в зависимости от его назначения принимают следующей, см:

Обычная кладка из сплошного кирпича, а также кладка

из бетонных и природных камней легких пород 9–13

Обычная кладка из дырчатого кирпича или керамических

камней с щелевыми пустотами 7–8

Бутовая кладка 4–6

Заливка пустот при бутовой кладке 13–15

Вибрированная бутовая кладка 1–3

Для кладки из сухих и пористых каменных материалов применяют растворы с большей подвижностью, а для кладки влажных и плотных материалов – с меньшей.

Выводы:_____________________________________________

Контрольные вопросы:

1. Что называют строительным раствором? Растворной смесью?

2. Какие бывают растворы в зависимости от вида минеральных вяжущих веществ?

3. Перечислить марки строительных растворов.

4. Что называют подвижностью растворной смеси?

5. Какая подвижность растворных смесей в зависимости от ее назначения?

Лабораторная работа № 17

Определение марки раствора

Цель работы : Определение марки раствора.

Теоретические положения

Основным качественным показателем строительного раствора является его марка, которую определяют путем испытания в возрасте 28 суток трех образцов-кубов размером 70,7x70,7x70,7 мм. При испытании растворной смеси подвижностью 5 см и более образцы-кубы изготовляют в металлических формах без поддонов, установленных на кирпич, а растворных смесей с подвижностью менее 5 см – в формах с поддонами.

Определение марки раствора

Описание оборудования : 1. Формы для изготовления кубов.

2. Гидравлический пресс.

Порядок выполнения работы:

Из растворных смесей подвижностью 5 см и более образцы-кубы изготовляют следующим образом: трехгнездовую металлическую форму без поддона предварительно смазывают машинным маслом и устанавливают на кирпич, поверхность которого покрыта мокрой газетной бумагой. Керамический кирпич должен иметь влажность не более 2 % и водопоглощение 10 ¸15 % (по массе). Все три отделения формы заполняют растворной смесью за один прием с некоторым избытком, затем уплотняют ее в каждом отделении формы 25 нажимами стального стержня диаметром 10 ¸ 12 мм, избыток растворной смеси срезают смоченным водой ножом вровень с краями формы и заглаживают поверхность. Повторнoe использование кирпича в качестве отсасывающего воду основания не допускается.

При изготовлении образцов-кубов из растворных смесей подвижностью менее 5 см в летних условиях собранную и смазанную металлическую форму заполняют растворной смесью в два слоя высотой примерно по 4 см. Избыток растворной смеси срезают смоченным водой ножом вровень с краями формы и заглаживают поверхность.

Через 24 ± 2 часа после укладки растворной смеси образцы освобождают из форм и хранят при температуре (20 ± 3) °С до момента их испытания (28 суток).

При испытании необходимо следить, чтобы плоскости пресса, соприкасающиеся с испытуемым образцом, были очищены. Испытуемый образец устанавливают на нижнюю опорную плиту пресса центрально относительно его оси так, чтобы основанием служили грани, соприкасающиеся со стенками формы при изготовлении образцов.

Предел прочности на сжатие R p для каждого образца вычисляют как частное от деления разрушающей нагрузки Р (в КН) на рабочую площадь образца S (в см 2):

За конечный результат принимают среднее арифметическое результатов испытаний трех образцов-кубов. Определение предела прочности раствора можно выполнять испытанием на изгиб и на сжатие образцов-балочек размером 40x40x160 мм по рекомендациям ГОСТ 5802-86.

Обработка результатов измерений

Вид раствора:

Среднее из 3-х значений ________________

Дата испытания: _________________________

Выводы: ____________________________________________

___________________________________________________________

Контрольные вопросы:

  1. По какой формуле определяют предел прочности раствора при сжатии?
  2. С какой целью смазывают металлическую форму?
  3. Каковы сроки и режим твердения образцов из растворов на гидравлических вяжущих?
  4. Почему при определении прочности раствора при сжатии для изготовления образцов в одних случаях используют формы без дна, а в других – обычные формы?
  5. Применения строительных растворов.

Приложение 1

Образец оформления титульного листа отчета

Министерство образования и науки РФ

Северо-Кавказский горно-металлургический институт (государственный технологический университет)

Кафедра строительного производства

Отчет

по лабораторным работам

Самые полные ответы на вопросы по теме: "тесты для определения подвижности в суставах".

При контроле гибкости в массовых занятиях физическими упражнениями и особенно при самоконтроле удобнее пользоваться качественной оценкой.

Тесты, определяющие качественную оценку подвижности некоторых отделов

    Подвижность шейного отдела позвоночника.

    • Наклонить голову вперед. Подбородок должен коснуться груди.

      Наклонить голову назад (туловище держите вертикально). Взгляд должен быть направлен точно вверх или немного вперед.

      Наклонить голову влево (вправо). Верхний край правого (левого) уха должен находиться на одной вертикальной прямой с нижним краем другого.

      Закрепите на стене метку на уровне носа. Встаньте левым (правым) боком. Поверните голову в сторону метки (туловище вслед за головой не поворачивать!). Ваш нос должен смотреть точно на метку.

      Если упражнения даются легко, подвижность в шейном отделе позвоночника отличная , если с трудом – хорошая

      Подвижность в лучезапястных суставах.

    Встаньте прямо, руки вперед ладонями внутрь. Согните кисти внутрь, чтобы ваши пальцы смотрели друг на друга (пальцы и ладонь должны находиться на одной прямой, локти не сгибать).

    Если кисти перпендикулярны руке (90 градусов), то подвижность отличная , если 80 градусов – хорошая , меньше – плохая .

    Встаньте прямо, на ладонь левой руки возле подушечки большого пальца положите скрепку или пуговицу и сомкните ладони перед грудной клеткой так, чтобы пальцы смотрели вверх. Постепенно разводите локти в стороны, пока предплечья не составят друг с другом прямую линию.

    Если предмет удерживается свободно, то гибкость отличная , с трудом – хорошая , если предмет падает – плохая .

      Подвижность в локтевых суставах.

    Встаньте прямо, руки в стороны, согните руки в локтевых суставах.

    Если кисть касается плеча, то гибкость отличная , если только пальцами – хорошая , если вообще не касается – плохая .

      Подвижность в плечевых суставах.

    Встаньте прямо, ноги слегка разведены. В левую руку возьмите небольшой предмет (мыльницу или коробок спичек). Поднимите левую руку вверх и согните ее за головой. Правую опустите вниз и согните за спиной. Попытайтесь передать предмет из левой руки в правую. Затем поменяйте руки и проделайте это же упражнение.

    Если упражнение получается легко, то подвижность в плечевых суставах отличная , если с трудом – хорошая , не получается – плохая .

    Встаньте спиной к стене на расстоянии ступни, руки в стороны (ладони вперед). Медленно отведите руки назад как можно дальше (не опуская их вниз и не поднимая вверх). Попытайтесь коснуться пальцами стены и удержать это положение 2-3 сек. (туловище не наклонять).

    Если удается сделать легко – гибкость отличная , с трудом – хорошая , не получается – плохая .

      Подвижность позвоночника.

    Закрепите на стене метку на уровне плеч. Встаньте спиной к стене на расстоянии одного шага. Наклонитесь назад так, чтобы увидеть метку.

    Затем встаньте к стене правым (левым) боком на расстоянии одного шага, поднимите левую (правую) руку вверх и постарайтесь достать прямой рукой закрепленную на стене метку.

Для определения подвижности плоских механизмов следует пользоваться формулой Чебышева:

W = 3n – 2p 5 – p 4 ,

где W - степень свободы механизма;

n - число подвижных звеньев;

p 1 - число низших кинематических пар (5 класса);

p 2 - число высших кинематических пар (4 класса).

Раздел 2. Кинематический анализ плоских механизмов с низшими парами

Кинематический анализ Механизмов имеет своей целью изучение теории строения механизмов, исследование движения звеньев с геомет­рической точки зрения, независимо от сил, вызывающих движение этих тел.

Кинематическое исследование состоит в решении следующих за­дач:

1. Определение класса механизма, т. е. выяснение, из каких структурных групп состоит механизм, и в какой последовательности эти группы присоединяются к исходному механизму 1 класса.

2. Определение перемещений звеньев и траекторий, описываемых точками звеньев.

3. Определение скоростей отдельных точек звеньев и угловых ско­ростей звеньев.

4.Определение ускорений отдельных точек звеньев и угловых ус­корений звеньев.

Пример: Дана схема (рис. 2.1), длины звеньев l O 1 A = 0,1 м, l A В = 0,28 м, l ВО3 = 0,24 м, l СО3 = 0,18 м, l С D = 0,28 м, n = 400 об/мин. Исследова­ние механизма производится в 10-м положении.

По рядок расчета:

1. Выбираем масштаб для построения кинематической схемы, определяемый по формуле

где l O 1 A = 0,1- истинная длина звена;

О 1 А = 50 мм - длина звена на чертеже.

2. В этом масштабе вычерчиваем планы механизма (рис. 2.1, а) в 12 равноотстоящих положениях кривошипа. За нулевое следует принять одно из крайних положений механизма. Для этого необходимо найти длины от­резков всех остальных

звеньев механизма, которые будут изображать их на чертеже:

Для того, чтобы найти правое крайнее положение механизма, нужно из точки О 1 ; отрезком длиной 0 1 А+АВ сделать засечку на дуге ра­диуса О 3 В. Получим точку В 0 для нулевого положения. Затем найдем все остальные положения звеньев механизма. С помощью засечки длиной АВ-0 1 А на дуге радиуса О 3 В определим левое крайнее положение точки В и обозначим ее через В 3 .

3. Производим структурный анализ. Так как заданный механизм плоский и относится к третьему семейству, то степень свободы меха­низма определяется по формуле Чебышева

где n - число подвижных звеньев, равное в данном механизме 5;

p 5 -число кинематических пар 5-го класса (низшие кинематиче­ские пары). В данном механизме их 7 (0-1, 1-2, 2-3, 3-4, 3-0, 4-5, 5-0);

р 4 -число кинематических пар 4-го класса (высшие кинематиче­ские пары), их в механизме нет. Тогда:

Рис. 2.1. Кинематическое исследование рычажного механизма методом планов:



а -кинематическая схема; б - группы Ассура; в - план скоро­стей; г - план ускорений

В данном механизме нет лишних степеней свободы и пассивных связей.

Проведем разложение механизма на структурные группы Ассура. Разложение следует начинать с отделения группы, наиболее отдаленной от ведущего звена. Разложение будет правильным, если после отделения каж­дой группы оставшаяся часть представляет собой кинематическую цепь с тем же числом степеней свободы, что и исходный механизм. По­этому раз­ложение необходимо начать с попытки отделения групп 2-го класса (двух-поводковых). В случае неудачи следует отделить группу 3-го класса или 4-го класса.

На рис. 3.1,б показано разложение механизма на структурные группы. Формула строения механизма имеет вид 1(0,1)®2 21 (2,3)®2 22 (4,5), т. е. к исходному механизму

1-го класса (звенья 0,1) присоединя­ются группы Ассура 2-го класса, состоящие из звеньев 2 - 3 (2-го по­рядка, 1-го вида) и 4- 5 (2-го порядка, 2-го вида). По классификации Ассура-Арт­обо­левского данный механизм является механизмом 2-го класса. Струк­турный анализ механизма всегда предшествует кинематическому исследо­ванию.

Кинематическое исследование механизма необходимо начинать с механизма 1-го класса, т. е. с ведущего звена. Задачи кинематического и силового исследования механизма в каждом положении его ведущего звена решаются для каждой группы Ассура отдельно, согласно формуле строе­ния.

Рассмотрим построение кинематических диаграмм. По найденным на пла­нах механизма (рис. 2.1,а) положениям ведомого звена 5 вычерчиваем гра­фик перемещения ползуна D (рис. 2.2,а), начиная от крайнего правого по­ложения. Так как по условию w 1 =const, то ось абсцисс является не только осью углов (j поворота кривошипа, но и осью времени t).

Время оборота ведущего звена (кривошипа O 1 A) в секундах, най­дем по формуле

x = 0-12 = 120...180 мм; тогда масштаб времени, с/мм

Масштаб перемещений, откладываемых по оси ординат, берем та­ким же, что и масштаб длины на схеме механизма, или изменяем.

Дифференцируя график перемещений, получим график изменения скорости ведомого звена. Дифференцирование проводим графически мето­дом хорд.

Последовательность построения графика V D = V D (t) (рис.2.2,б):

1. Проводим секущие (хорды) 0a, аb, bс, сd, df и т. д.

2. Выбираем полюс р v на расстоянии H v , которое рекомендуется брать порядка 20...40 мм, и проводим из него лучи 1, 2, 3, 4 и т. д., параллель­ные секущим 0a, аb, bс, сd, df и т.д., до пересечения с осью ординат.

3. Из точек пересечения 1, 2, 3 и т. д. проводим горизонтали до пере­сечения с вертикальными прямыми, проведенными из середин 0-1, 1-2 и т. д. отрезков времени Dt.

4. Точки пересечения 1", 2", 3", 4" и т. д. соединяем плавной кривой. Это будет кривая изменения скорости ведомого звена.

5. Вычисляем масштаб скорости, мс -1 /мм,

где w 1 - угловая скорость звена 1,

m s - масштаб перемещений;

m t - масштаб времени;

H v -полюсное расстояние, мм.

Масштаб графика скорости зависит от выбора полюсного рас­стояния. Чем больше полюсное расстояние, тем меньше численный мас­штаб и тем большие ординаты имеет график скорости. Начальная и ко­нечная точки графика за период цикла движения механизма должны иметь одинаковые ординаты (в данном случае они равны нулю).

Аналогичным способом получим кривую ускорения (рис.2.2,в), дифференцируя график скорости. График ускорения, постро­енный путем графического дифференцирования кривой графика скоро­сти, изображает закон изменения лишь касательного ускорения. Только в случае прямолинейного движения точки, когда нормальное ускорение равно нулю, построенный график отобразит (как в нашем примере) закон изменения полного ускорения. Начальная и конечная точки графика ус­корения за время цикла движения механизма должны иметь одинаковые ординаты.

Масштаб графика ускорений, мс -1 /мм, определяется по формуле

Рис. 2.2. Кинематические диаграммы

Рассмотрим построение плана скоростей для 10-го положения (рис. 2.1,в).

Величина скорости точки A, м/с, перпендикулярной кривошипу 0 1 A, определяется по формуле

Для построения плана скоростей выбираем на плоскости произ­вольную точку р - полюс плана скоростей, который является началом плана скоростей. Из полюса откладываем отрезок рa , изображающий на плане скоростей вектор скорости V A . Он перпендикулярен звену 0 1 А.

Тогда масштаб плана скоростей, мс -1 /мм

Рассмотрим первую группу звеньев (звенья 2 и 3).

Для определения скорости точки В напишем два векторных урав­нения согласно теореме о сложении скоростей при плоско­параллельном движении:

Векторы относительных скоростей V В A и V BO 3 известны только по направлению. Вектор относительной ско­рости V ВA перпендикулярен звену AВ, а вектор V ВОЗ - звену О 3 В.

Точка О 3 неподвижна, поэтому V 03 =0. Таким образом, рассматри­ваемая группа присоединена к двум точкам, скорости которых известны и по направлению, и по величине.

В соответствии с векторным уравнением (2.3) на плане скоростей прово­дим через точку (а ) прямую, перпендикулярную звену AВ. Это есть ли­ния вектора V BA . В соответствии с векторным равенством (2.4) про­водим через точку О 3 на плане скоростей прямую, перпендикулярную звену O 3 B. Это будет линия вектора V ВОЗ. Точка (в ) пересечения этих двух пря­мых и будет определять конец вектора, изображающего на плане скоро­стей вектор Vв. Чтобы определить истинную величину любого из векто­ров в м/с, надо его длину умножить на масштаб плана скоростей.

Напри­мер,

Для определения скорости точки С воспользуемся тем, что кар­тина относительных скоростей образует на плане скоростей фигуру, по­добную фигуре звена и повернутую относительно ее на 90° в сторону вращения звена. В соответствии с этим отрезок рb плана скоростей раз­делим в отно­ше­нии О 3 В: O 3 C, т. е.

Откуда

Величина скорости точки С, м/с

Перейдем к группе (звенья 4 и 5).

Для определения скорости точки D напишем векторные уравнения

Вектор относительной скорости V DC и вектор абсолютной скорости V D не известны по величине, но известны по направлению. В соответствии с векторным уравнением через точку С на плане скоростей проводим пря­мую, перпендикулярную звену CD. Это будет линия относительной скоро­сти, где далее проводим линию параллельно направляющей

Х-Х. Точка d, пе­ресечения этих прямых и есть искомая точка. Истинная величина скорости точки D, м/с

Определим угловые скорости. Угловая скорость звена 2, рад/с, оп­ределяется по формуле

Чтобы определить направление угловой скорости w 2 , следует век­тор относительной скорости V BA перенести в точку В механизма, а точку A мысленно закрепить. Тогда вектор V BA будет стремиться вращать звено 2 по ходу часовой стрелки. Это и будет направление угловой ско­рости w 2

Остальные угловые скорости:



Новое на сайте

>

Самое популярное