Домой Участок Молниезащита зданий, сооружений, оборудования и коммуникаций. Требования предъявляемые к молниеотводам Заземление мачт освещения рд 34.21 122 87

Молниезащита зданий, сооружений, оборудования и коммуникаций. Требования предъявляемые к молниеотводам Заземление мачт освещения рд 34.21 122 87

Действующий

РД 34.21.122-87

ИНСТРУКЦИЯ
ПО УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ

СОСТАВИТЕЛИ: д.т.н. Э.М.Базелян - ЭНИН им. Г.М.Кржижановского, В.И.Поливанов, В.В.Шатров, А.В.Цапенко

СОГЛАСОВАНА Госстроем СССР, письмо N АЧ-3945-8 от 30.07.87

УТВЕРЖДЕНА Главтехуправлением Минэнерго СССР 12.10.87

ПРЕДИСЛОВИЕ

Требования настоящей Инструкции обязательны для выполнения всеми министерствами и ведомствами.

Настоящая Инструкция устанавливает необходимый комплекс мероприятий и устройств, предназначенных для обеспечения безопасности людей (сельскохозяйственных животных), предохранения зданий, сооружений, оборудования и материалов от взрывов, пожаров и разрушений, возможных при воздействиях молнии.

Настоящая Инструкция должна соблюдаться при разработке проектов зданий и сооружений.

Настоящая Инструкция не распространяется на проектирование и устройство молниезащиты линий электропередачи, электрической части электростанций и подстанций, контактных сетей, радио- и телевизионных антенн, телеграфных, телефонных и радиотрансляционных линий, а также зданий и сооружений, эксплуатация которых связана с применением, производством или хранением пороха и взрывчатых веществ.

Настоящая Инструкция регламентирует мероприятия по молниезащите, выполняемые при строительстве, и не исключает использования дополнительных средств молниезащиты внутри здания и сооружения при проведении реконструкции или установке дополнительного технологического или электрического оборудования.

При разработке проектов зданий и сооружений помимо требований настоящей Инструкции должны быть учтены требования к выполнению молниезащиты других действующих норм, правил, инструкций, государственных стандартов.

С введением в действие настоящей Инструкции утрачивает силу Инструкция по проектированию и устройству молниезащиты зданий и сооружений (СН 305-77).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. В соответствии с назначением зданий и сооружений необходимость выполнения молниезащиты и ее категория, а при использовании стержневых и тросовых молниеотводов - тип зоны защиты определяются по табл.1 в зависимости от среднегодовой продолжительности гроз в месте нахождения здания или сооружения, а также от ожидаемого количества поражений его молнией в год. Устройство молниезащиты обязательно при одновременном выполнении условий, записанных в графах 3 и 4 табл.1.

Таблица 1

Здания и сооружения

Местоположение

Тип зоны защиты при использовании стержневых и тросовых молниеотводов

Кате-
гория молние- защиты

ПУЭ относятся к зонам классов B-I и В-II

На всей территории СССР

То же классов B-Iа, В-Iб, B-IIa

При ожидаемом количестве поражений молнией в год здания или сооружения 1 - зона А; при 1 - зона Б

Наружные установки, создающие согласно ПУЭ зону класса В-Iг

На всей территории СССР

Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIa

Для зданий и сооружений I и II степеней огнестойкости при 0,12 и для III-V степеней огнестойкости при 0,022 - зона Б; при 2 - зона А

Расположенные в сельской местности небольшие строения III-V степеней огнестойкости, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа

В местностях со средней продолжительностью гроз 20 ч в год и более при 0,02

III
(п.2.30)

Наружные установки и открытые склады, создающие согласно ПУЭ зону классов П-III

В местностях со средней продолжительностью гроз 20 ч в год и более

Здания и сооружения III, IIIa, IIIб, IV, V степеней огнестойкости, в которых отсутствуют помещения, относимые по ПУЭ

При 0,12 - зона Б, при 2 - зона А

Здания и сооружения из легких металлических конструкций со сгораемым утеплителем (IVа степени огнестойкости), в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов

В местностях со средней продолжительностью гроз 10 ч в год и более

При 0,022 - зона Б, при 2 - зона А

Небольшие строения III-V степеней огнестойкости, расположенные в сельской местности, в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов

В местностях со средней продолжительностью гроз 20 ч в год и более для III, IIIа, IIIб, IV, V степеней огнестойкости при 0,1, для IVа степени огнестойкости при 0,02

III
(п.2.30)

Здания вычислительных центров, в том числе расположенные в городской застройке

В местностях со средней продолжительностью гроз 20 ч в год и более

Животноводческие и птицеводческие здания и сооружения III-V степеней огнестойкости: для крупного рогатого скота и свиней на 100 голов и более, для овец на 500 голов и более, для птицы на 1000 голов и более, для лошадей на 40 голов и более

В местностях со средней продолжительностью гроз 40 ч в год и более

Дымовые и прочие трубы предприятий и котельных, башни и вышки всех назначений высотой 15 м и более

В местностях со средней продолжительностью гроз 10 ч в год и более

III
(п.2.31)

Жилые и общественные здания, высота которых более чем на 25 м превышает среднюю высоту окружающих зданий в радиусе 400 м, а также отдельно стоящие здания высотой более 30 м, удаленные от других зданий более чем на 400 м

В местностях со средней продолжительностью гроз 20 ч в год и более

Отдельно стоящие жилые и общественные здания в сельской местности высотой более 30 м

Общественные здания III-V степеней огнестойкости следующего назначения: детские дошкольные учреждения, школы и школы-
интернаты, стационары лечебных учреждений, спальные корпуса и столовые учреждений здравоохранения и отдыха, культурно-
просветительные и зрелищные учреждения, административные здания, вокзалы, гостиницы, мотели и кемпинги

Открытые зрелищные учреждения (зрительные залы открытых кинотеатров, трибуны открытых стадионов и т.п.)

Здания и сооружения, являющиеся памятниками истории, архитектуры и культуры (скульптуры, обелиски и т.п.)


Оценка среднегодовой продолжительности гроз и ожидаемого количества поражений молнией зданий или сооружений производится согласно обязательному приложению 2; построение зон защиты различных типов - согласно приложению 3.

1.2. Здания и сооружения, отнесенные по устройству молниезащиты к I и II категориям, должны быть защищены от прямых ударов молнии, вторичных ее проявлений и заноса высокого потенциала через наземные (надземные) и подземные металлические коммуникации.

Здания и сооружения, отнесенные по устройству молниезащиты к III категории, должны быть защищены от прямых ударов молнии и заноса высокого потенциала через наземные (надземные) металлические коммуникации. Наружные установки, отнесенные по устройству молниезащиты ко II категории, должны быть защищены от прямых ударов и вторичных проявлений молнии.

Наружные установки, отнесенные по устройству молниезащиты к III категории, должны быть защищены от прямых ударов молнии.

Внутри зданий большой площади (шириной более 100 м) необходимо выполнять мероприятия по выравниванию потенциалов.

1.3. Для зданий и сооружений с помещениями, требующими устройства молниезащиты I и II или I и III категорий, молниезащиту всего здания или сооружения следует выполнять по I категории.

Если площадь помещений I категории молниезащиты составляет менее 30% площади всех помещений здания (на всех этажах), молниезащиту всего здания допускается выполнять по II категории независимо от категории остальных помещений. При этом на вводе в помещения I категории должна быть предусмотрена защита от заноса высокого потенциала по подземным и наземным (надземным) коммуникациям, выполняемая согласно пп.2.8 и 2.9 настоящей Инструкции.

1.4. Для зданий и сооружений с помещениями, требующими устройства молниезащиты II и III категорий, молниезащиту всего здания или сооружения следует выполнять по II категории.

Если площадь помещений II категории молниезащиты составляет менее 30% площади всех помещений здания (на всех этажах), молниезащиту всего здания допускается выполнять по III категории. При этом на вводе в помещения II категории должна быть предусмотрена защита от заноса высокого потенциала по подземным и наземным (надземным) коммуникациям, выполняемая согласно пп.2.22 и 2.23 настоящей Инструкции.

1.5. Для зданий и сооружений, не менее 30% общей площади которых приходится на помещения, требующие устройства молниезащиты по I, II или III категории, молниезащита этой части зданий и сооружений должна быть выполнена в соответствии с п.1.2 настоящей Инструкции.

Для зданий и сооружений, более 70% общей площади которых составляют помещения, не подлежащие молниезащите согласно табл.1, а остальную часть здания составляют помещения I, II или III категории молниезащиты, должна быть предусмотрена только защита от заноса высоких потенциалов по коммуникациям, вводимым в помещения, подлежащие молниезащите: по I категории - согласно пп.2.8, 2.9 настоящей Инструкции; по II и III категориям - путем присоединения коммуникаций к заземляющему устройству электроустановок, соответствующему указаниям п.1.7 настоящей Инструкции, или к арматуре железобетонного фундамента здания (с учетом требований п.1.8 настоящей Инструкции). Такое же присоединение должно быть предусмотрено для внутренних коммуникаций (не вводимых извне).

1.6. В целях защиты зданий и сооружений любой категории от прямых ударов молнии следует максимально использовать в качестве естественных молниеотводов существующие высокие сооружения (дымовые трубы, водонапорные башни, прожекторные мачты, воздушные линии электропередачи и т.п.), а также молниеотводы других близрасположенных сооружений.

Если здание или сооружение частично вписывается в зону защиты естественных молниеотводов или соседних объектов, защита от прямых ударов молнии должна предусматриваться только для остальной, незащищенной его части. Если в ходе эксплуатации здания или сооружения реконструкция или демонтаж соседних объектов приведет к увеличению этой незащищенной части, соответствующие изменения защиты от прямых ударов молнии должны быть выполнены до начала ближайшего грозового сезона; если демонтаж или реконструкция соседних объектов проводятся в течение грозового сезона, на это время должны быть предусмотрены временные мероприятия, обеспечивающие защиту от прямых ударов молнии незащищенной части здания или сооружения.

1.7. В качестве заземлителей молниезащиты допускается использовать все рекомендуемые ПУЭ заземлители электроустановок, за исключением нулевых проводов воздушных линий электропередачи напряжением до 1 кВ.

1.8. Железобетонные фундаменты зданий, сооружений, наружных установок, опор молниеотводов следует, как правило, использовать в качестве заземлителей молниезащиты при условии обеспечения непрерывной электрической связи по их арматуре и присоединения ее к закладным деталям с помощью сварки.

Битумные и битумно-латексные покрытия не являются препятствием для такого использования фундаментов. В средне- и сильноагрессивных грунтах, где защита железобетона от коррозии выполняется эпоксидными и другими полимерными покрытиями, а также при влажности грунта менее 3% использовать железобетонные фундаменты в качестве заземлителей не допускается.

Искусственные заземлители следует располагать под асфальтовым покрытием либо в редко посещаемых местах (на газонах, в удалении на 5 м и более от грунтовых проезжих и пешеходных дорог и т.п.).

1.9. Выравнивание потенциала внутри зданий и сооружений шириной более 100 м должно происходить за счет непрерывной электрической связи между несущими внутрицеховыми конструкциями и железобетонными фундаментами, если последние могут быть использованы в качестве заземлителей согласно п.1.8 настоящей Инструкции.

В противном случае должна быть обеспечена прокладка внутри здания в земле на глубине не менее 0,5 м протяженных горизонтальных электродов сечением не менее 100 мм. Электроды следует прокладывать не реже чем через 60 м по ширине здания и присоединять по его торцам с двух сторон к наружному контуру заземления.

1.10. Нa часто посещаемых открытых площадках с повышенной опасностью поражения молнией (вблизи монументов, телебашен и подобных сооружений высотой более 100 м) выравнивание потенциала выполняется присоединением токоотводов или арматуры сооружения к его железобетонному фундаменту не реже чем через 25 м по периметру основания сооружения.

При невозможности использования железобетонных фундаментов в качестве заземлителей под асфальтовым покрытием площадки на глубине не менее 0,5 м через каждые 25 м должны быть проложены радиально расходящиеся горизонтальные электроды сечением не менее 100 мм и длиной 2-3 м, присоединенные к заземлителям защиты сооружения от прямых ударов молнии.

1.11. При возведении в грозовой период высоких зданий и сооружений на них в ходе строительства, начиная с высоты 20 м, необходимо предусматривать следующие временные мероприятия по молниезащите. На верхней отметке строящегося объекта должны быть закреплены молниеприемники, которые через металлические конструкции или свободно спускающиеся вдоль стен токоотводы следует присоединять к заземлителям, указанным в пп.3.7 и 3.8 настоящей Инструкции. В зону защиты типа Б молниеотводов должны входить все наружные площадки, где в ходе строительства могут находиться люди. Соединения элементов молниезащиты могут быть сварными или болтовыми. По мере увеличения высоты строящегося объекта молниеприемники следует переносить выше.

При возведении высоких металлических сооружений их основания в начале строительства должны быть присоединены к заземлителям, указанным в пп.3.7 и 3.8 настоящей Инструкции.

1.12. Устройства и мероприятия по молниезащите, отвечающие требованиям настоящих норм, должны быть заложены в проект и график строительства или реконструкции здания или сооружения таким образом, чтобы выполнение молниезащиты происходило одновременно с основными строительно-монтажными работами.

1.13. Устройства молниезащиты зданий и сооружений должны быть приняты и введены в эксплуатацию к началу отделочных работ, а при наличии взрывоопасных зон - до начала комплексного опробования технологического оборудования.

При этом оформляется и передается заказчику скорректированная при строительстве и монтаже проектная документация по устройству молниезащиты (чертежи и пояснительная записка) и акты приемки устройств молниезащиты, в том числе акты на скрытые работы по присоединению заземлителей к токоотводам и токоотводов к молниеприемникам, за исключением случаев использования стального каркаса здания в качестве токоотводов и молниеприемников, а также результаты замеров сопротивлений току промышленной частоты заземлителей отдельно стоящих молниеотводов.

1.14. Проверка состояния устройств молниезащиты должна производиться для зданий и сооружений I и II категорий один раз в год перед началом грозового сезона, для зданий и сооружений III категории - не реже одного раза в три года.

Проверке подлежат целость и защищенность от коррозии доступных обзору частей молниеприемников и токоотводов и контактов между ними, а также значение сопротивления току промышленной частоты эаземлителей отдельно стоящих молниеотводов. Это значение не должно превышать результаты соответствующих замеров на стадии приемки более чем в 5 раз (см. п.1.13 настоящей Инструкции). В противном случае проводить ревизию заземлителя.

2. ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ

Молниезащита I категории

2.1. Защита от прямых ударов молнии зданий и сооружений, относимых по устройству молниезащиты к I категории, должна выполняться отдельно стоящими стержневыми (рис.1) или тросовыми (рис.2) молниеотводами.

Рис.1. Отдельно стоящий стержневой молниеотвод

Рис.1. Отдельно стоящий стержневой молниеотвод:

1 - защищаемый объект; 2 - металлические коммуникации

Рис.2. Отдельно стоящий тросовый молниеотвод

Рис.2. Отдельно стоящий тросовый молниеотвод:

1 - защищаемый объект; 2 - металлические коммуникации

Указанные молниеотводы должны обеспечивать зону защиты типа А в соответствии с требованиями приложения 3. При этом обеспечивается удаление элементов молниеотводов от защищаемого объекта и подземных металлических коммуникаций в соответствии с пп.2.3, 2.4, 2.5 настоящей Инструкции.

2.2. Выбор заземлителя защиты от прямых ударов молнии (естественного или искусственного) определяется требованиями п.1.8 настоящей Инструкции.

При этом для отдельно стоящих молниеотводов приемлемыми являются следующие конструкции заземлителей (табл.2):

а) один (и более) железобетонный подножник длиной не менее 2 м или одна (и более) железобетонная свая длиной не менее 5 м;

б) одна (и более) заглубленная в землю не менее чем на 5 м стойка железобетонной опоры диаметром не менее 0,25 м;

в) железобетонный фундамент произвольной формы с площадью поверхности контакта с землей не менее 10 м;

г) искусственный заземлитель, состоящий из трех и более вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м. Минимальные сечения (диаметры) электродов определяются по табл.3.

Таблица 2

Заземлитель

Размеры, м

Железобетонный подножник

Железобетонная свая

Стальной двухстержневой: полоса размером 40х4 мм стержни диаметром 10-20 мм

Стальной трехстержневой: полоса размером 40х4 мм, стержни диаметром 10-20 мм

Таблица 3

Форма токоотвода и заземлителя

Сечение (диаметр) токоотвода и заземлителя, мм, проложенных

снаружи здания на воздухе

Круглые токоотводы и перемычки диаметром

Круглые вертикальные электроды диаметром

Круглые горизонтальные* электроды диаметром

Прямоугольные электроды:

сечением

толщиной

___________________
* Только для выравнивания потенциалов внутри зданий и для прокладки наружных контуров на дне котлована по периметру здания.

2.3. Наименьшее допустимое расстояние по воздуху от защищаемого объекта до опоры (токоотвода) стержневого или тросового молниеотвода (см. рис.1 и 2) определяется в зависимости от высоты здания, конструкции заземлителя и эквивалентного удельного электрического сопротивления грунта , Ом·м.

Для зданий и сооружений высотой не более 30 м наименьшее допустимое расстояние , м, равно:

при 100 Ом·м для заземлителя любой конструкции, приведенной в п.2.2 настоящей Инструкции, 3 м;

при 1001000 Ом·м:

для заземлителей, состоящих из одной железобетонной сваи, одного железобетонного подножника или заглубленной стойки железобетонной опоры, длины которых указана в п.2.2, а-б, ;

для заземлителей, состоящих из четырех железобетонных свай либо подножников, расположенных в углах прямоугольника на расстоянии 3-8 м один от другого, или железобетонного фундамента произвольной формы с площадью поверхности контакта с землей не менее 70 м, или искусственных заземлителей, указанных в п.2.2г настоящей Инструкции, 4 м.

Для зданий и сооружений большей высоты определенное выше значение должно быть увеличено на 1 м в расчете на каждые 10 м высоты объекта сверх 30 м.

2.4. Наименьшее допустимое расстояние от защищаемого объекта до троса в середине пролета (см.рис.2) определяется в зависимости от конструкции заземлителя, эквивалентного удельного сопротивления грунта, Ом·м и суммарной длины молниеприемников и токоотводов.

При длине 200 м наименьшее допустимое расстояние , м, равно:

при 100 Ом·м для заземлителя любой конструкции, приведенной в п.2.2 настоящей Инструкции, 3,5 м;

при 1001000 Ом·м:

для заземлителей, состоящих из одной железобетонной сваи, одного железобетонного подножника или заглубленной стойки железобетонной опоры, длина которых указана в п.2.2, а-б настоящей Инструкции, ;

для заземлителей, состоящих из четырех железобетонных свай или подножников, расположенных на расстоянии 3-8 м один от другого, или искусственных заземлителей, указанных в п.2.2г настоящей Инструкции,

Молнии – это концентрированный электрический ток, который испускается грозовым облаком, образующимся при повышенной влажности воздуха и резком изменении температуры. Молнии способны преодолевать огромные расстояния. Прямое попадание грозового разряда в объект обеспечивает нагрев до сверхвысоких температур с последующим плавлением и даже испарением. В конструкциях за счет резкого возрастания электродинамического напряжения могут происходить взрывы. Имеется и последующее негативное влияние молниевого разряда: спровоцированное ударом магнитное поле порождает электродвижущую силу на замкнутых контурах из металлических конструкций, которая, в свою очередь, может вызвать искры и сильный нагрев, вывести из строя электроустановки и стать причиной для электроударов и прочих несчастных случаев с людьми. Для предотвращения негативных последствий от ударов молнии необходимо предусмотреть устройство молниезащиты.

Что такое молниезащита зданий и сооружений

Коротко это комплекс действий и мероприятий, а также различные защитные приспособления для предотвращения аварий и возгораний в зданиях и сооружениях жилого и промышленного назначения при попадании в них молний.

Мероприятия по молниезащите подразделяются на внешние и внутренние. Внешняя защита состоит из устройств, которые перехватывают электрозаряд от молнии и направляют его в землю по специальным токоотводным каналам. Такие конструкции, смонтированные в соответствии с обязательными техническими правилами по молниезащите, надежно предохраняют строения и людей внутри них от поражения.

Внешние мероприятия по молниезащите зданий и сооружений делятся на активные и пассивные.

Пассивная защита представлена в следующих вариантах :

  • молниеприемная сетка из стальных прутков или катанки, ее применение разрешают все нормативы по молниезащите, хотя при малых превышениях сетка не в состоянии защитить поверхность кровли достаточно надежно;

  • металлические прутья (от одного до нескольких штук) для приема разрядов молний, специальный кабель связывает их и заземляющие контуры- молниеотводы;
  • молниепринимающие металлические тросы.

Все приспособления внешней молниезащиты имеют один стандарт и состоят из трех основных частей: перехватчика электроразряда из грозового облака – молниеприёмника; конструктивной части, проводящей электричество на заземлители, и заземляющего элемента, который выводит молниевый заряд в почву.

Внутренний комплекс мероприятий по молниезащите направлен на предотвращение вреда, который может получить электрооборудование от резкого скачка напряжения в сети в результате удара молнии. Исполнение внутренней молниезащиты представлено двумя типами: 1 – противостояние прямому удару молнии, 2 – противостояние непрямому удару, прошедшему вблизи зданий/сооружений.

Со вторичным воздействием молниевого разряда в виде высоких потенциалов внутри строений борются с помощью грамотной организации заземления. Электромагнитную индукцию в длинных железных конструкциях снимают с помощью установки перемычек из металла. Занос высоких электропотенциалов через вводы для коммуникаций предотвращают вентильными разрядниками и специальными искровыми прерывателями, которые срабатывают при резком скачке напряжения.

Также проблема решается запрещением ввода воздушных линий для некоторых категорий сооружений и заменой их подземными кабельными вводами.

Принципы действия молниеотводов

Работа этих устройств базируется на том, что молнии всегда бьют в наиболее высокие и выделяющиеся металлические части. Все молниеотводы имеют свою защитную зону – это территория, которая защищена от прямого попадания молнии. При приближении разряда самая первая молния поражает самую высокую точку здания или сооружения, а защита отводит электрическую энергию в почву, а сам охраняемый объект не затрагивается. В случае, когда размеры сооружения превышают размеры охранной зоны одного молниеотвода, устанавливают дополнительные устройства такого типа (три-четыре взаимосвязанных стержневых устройства, имеющих общее заземление).

Надежность защитных зон, которые обеспечивают молниеотводы, по ГОСТ подразделяется на типы: «А» – степень надежности приближена к ста процентам (99,5) и «Б» – степень защищенности от 95 процентов. Сама защитная зона имеет конусообразную форму, ее высота и площадь основания определяются габаритами здания. Самая большая высота громоотводов, которую допускают строительные нормы, составляет 150 метров.

Устройство молниеотводов

Любой молниеотвод состоит из трех основных элементов: приемника молний, токоотводящих жил (обычно из меди или стали) и защемляющего контура, передающего накопленный заряд в землю на глубину от полутора до трех метров. Простейший вид такого устройства представляет собой металлическую мачту. Опорные стойки приспособлений по молниезащите имеют, как правило, исполнение в виде стальных труб одинакового диаметра, а также колонн из древесины или железобетона. Токоведущие части молниеотводящих устройств часто крепятся на конструкционные элементы самих сооружений. Молниепринимающие ловушки на молниеотводах стержневого типа состоят из стали и должны быть не менее 20 сантиметров высотой.

Тросовые молниеотводы называют еще линейными, они представляют собой проволоку, натянутую между пары железных мачт. Такое устройство позволяет собирать все попадающие в поле защиты разряды молний. Линейные громоотводы соединяются с заземляющим контуром кабелем большого диаметра из меди или же простой металлической арматурой.

На высотных зданиях часто монтируют металлический или железобетонный каркас в качестве токоотвода.

Обратите внимание! Необходимо обязательно устанавливать надежное соединение (предусмотренное снип) для всех элементов каркаса. Также токоотводами могут служить балконные перила, лестницы для экстренной эвакуации и другие элементы конструкции из металла. Токоотводящие жилы крепятся к стеновым поверхностям сооружений с помощью пластиковых клипс, также можно использовать кабель канал, который поможет увеличить срок службы молниепровода. Планируя строительство, следует предусмотреть наличие заземляющих контуров с шагом 20-30 метров по всему периметру здания.

Классификация объектов, подлежащих защите

Согласно нормам гост, здания и сооружения, которые необходимо охранять от попадания молний, делятся по степени опасности на обыкновенные и спецобъекты. Обычными объектами считаются строения жилого и административного назначения для торговых, промышленных и сельскохозяйственных целей, высота которых не превышает 60 метров. К спецобъектам инструкцией по устройству молниезащиты зданий и производственных сооружений относятся:

  • потенциально опасные для окружающих людей и построек;
  • опасные для окружающей среды;
  • способные в случае удара молнией стать причиной радиационного, биологического или химического заражения – выбросов, превышающих санитарные нормы (как правило, это касается государственных предприятий);
  • сооружения с высотой, превышающей 60 метровую отметку, времянки, площадки для игр, объекты в процессе строительства и другие.

Для таких объектов устанавливается уровень молниезащиты не ниже 0,9. Хозяин сооружения или заказчик стройки может самостоятельно установить для здания повышенный класс надежности.

Обычные же объекты строительства, согласно гост, имеют четыре уровня надежности защиты от прямого удара молний:

  • первый (при пиковом токе молнии 200 килоАмпер), надежность – 0,98;
  • второй (ток молнии 150 килоАмпер), надежность – 0,95;
  • третий (ток 100 килоАмпер), надежность – 0,9;
  • четвертый (ток 100 килоАмпер), надежность – 0,8.

Категории молниезащиты

Руководящие документы (рд) выделяют три основных категории молниезащиты, определяемые средним числом и длительностью гроз в той или иной местности, местоположением здания и вероятностью поражения его молниями, наличием в строении зон пожарной и взрывной опасности.

К первой категории молниезащиты рд относят объекты промышленного производства с В-2 и В-1 категориями взрывоопасности. Вторая категория полной молниезащиты присваивается зданиям, где имеется В-2а, В-1а и В-1б классы опасности взрывов, такие площади занимают не менее 30 процентов помещений. Такой же уровень защиты от ударов молний присваивается складам ГСМ, удобрений, холодильникам с аммиаком и мукомольным заводам. Согласно рд, в производственных зданиях со 2 категорией молниезащиты необходимо заземлять все корпуса электромашин, выполненные из металла. При переходах воздушных линий в кабельные необходимо ставить разрядник перемычки на каждой фазе.

Молниезащита 3 категории устанавливается на сооружениях, имеющих 3 и 4 степень устойчивости к горению, а также при годовой длительности грозы не менее 20 часов: детские учреждения, школы, больницы, развлекательные центры, водонапорные башни, птицефабрики и животноводческие комплексы, а также отдельно стоящие жилые здания с высотой, превышающей 30 метров.

Нормативные документы по молниезащите

В силу важности защиты зданий и сооружений от попадания молний государство регулирует требования к молниезащите выпуском нормативных документов:

  • технические регламенты;
  • национальные стандарты – гост (например, гост Р МЭК 62305-1-2010. Менеджмент риска. Защита от молнии);
  • инструкции по ведомствам и местные руководящие документы – рд (например, «Инструкция по молниезащите зданий и сооружений» рд 34.21.122-87);
  • правила по устройству электрических установок – пуэ (в настоящее время действует редакция № 7).

Используются также международные стандарты ИСО.

Электрические разряды, накапливаемые в грозовых облаках и приносимые на поверхность земли молниями, могут нанести существенный вред зданиям, сооружениям и находящимся в них и поблизости людям и другим объектам. Для предотвращения негативных последствий применяются меры по молниезащите, в виде системы различных приспособлений и специальных мероприятий, которые минимизируют возможность электроударов, аварий и пожаров.

Видео

МИНИСТЕРСТВО ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

УТВЕРЖДЕНО
приказом Минэнерго России
от 30.06.2003 № 280

ИНСТРУКЦИЯ ПО УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ, СООРУЖЕНИЙ И ПРОМЫШЛЕННЫХ КОММУНИКАЦИЙ

СО 153-34.21.122-2003

УДК 621.316(083.13)

Инструкция распространяется на все виды зданий, сооружений и промышленных коммуникаций независимо от ведомственной принадлежности и формы собственности.

Для руководителей и специалистов проектных и эксплуатационных организаций.

1. ВВЕДЕНИЕ

Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций (далее - Инструкция) распространяется на все виды зданий, сооружений и промышленные коммуникации независимо от ведомственной принадлежности и формы собственности.

Инструкция предназначена для использования при разработке проектов, строительстве, эксплуатации, а также при реконструкции зданий, сооружений и промышленных коммуникаций.

В случае, когда требования отраслевых нормативных документов являются более жесткими, чем в настоящей Инструкции, при разработке молниезащиты рекомендуется выполнять отраслевые требования. Также рекомендуется поступать, когда предписания Инструкции нельзя совместить с технологическими особенностями защищаемого объекта. При этом используемые средства и методы молниезащиты выбираются исходя из условия обеспечения требуемой надежности.

При разработке проектов зданий, сооружений и промышленных коммуникаций, помимо требований Инструкции, учитываются дополнительные требования к выполнению молниезащиты других действующих норм, правил, инструкций, государственных стандартов.

При нормировании молниезащиты за исходное принято положение, что любое ее устройство не может предотвратить развитие молнии.

Применение норматива при выборе молниезащиты существенно снижает риск ущерба от удара молнии.

Тип и размещение устройств молниезащиты выбираются на стадии проектирования нового объекта, чтобы иметь возможность максимально использовать проводящие элементы последнего. Это облегчит разработку и исполнение устройств молниезащиты, совмещенных с самим зданием, позволит улучшить его эстетический вид, повысить эффективность молниезащиты, минимизировать ее стоимость и трудозатраты.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Термины и определения

Удар молнии в землю - электрический разряд атмосферного происхождения между грозовым облаком и землей, состоящий из одного или нескольких импульсов тока.

Точка поражения - точка, в которой молния соприкасается с землей, зданием или устройством молниезащиты. Удар молнии может иметь несколько точек поражения.

Защищаемый объект - здание или сооружение, их часть или пространство, для которых выполнена молниезащита, отвечающая требованиям настоящего норматива.

Устройство молниезащиты - система, позволяющая защитить здание или сооружение от воздействий молнии. Она включает в себя внешние и внутренние устройства. В частных случаях молниезащита может содержать только внешние или только внутренние устройства.

Устройства защиты от прямых ударов молнии (молниеотводы) - комплекс, состоящий из молниеприемников, токоотводов и заземлителей.

Устройства защиты от вторичных воздействий молнии - устройства, ограничивающие воздействия электрического и магнитного полей молнии.

Устройства для выравнивания потенциалов - элементы устройств защиты, ограничивающие разность потенциалов, обусловленную растеканием тока молнии.

Молниеприемник - часть молниеотвода, предназначенная для перехвата молний.

Токоотвод (спуск) - часть молниеотвода, предназначенная для отвода тока молнии от молниеприемника к заземлителю.

Заземляющее устройство - совокупность заземлителя и заземляющих проводников.

Заземлитель - проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через проводящую среду.

Заземляющий контур - заземляющий проводник в виде замкнутой петли вокруг здания в земле или на ее поверхности.

Сопротивление заземляющего устройства - отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

Напряжение на заземляющем устройстве - напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.

Соединенная между собой металлическая арматура - арматура железобетонных конструкций здания (сооружения), которая обеспечивает электрическую непрерывность.

Опасное искрение - недопустимый электрический разряд внутри защищаемого объекта, вызванный ударом молнии.

Безопасное расстояние - минимальное расстояние между двумя проводящими элементами вне или внутри защищаемого объекта, при котором между ними не может произойти опасного искрения.

Устройство защиты от перенапряжений - устройство, предназначенное для ограничения перенапряжений между элементами защищаемого объекта (например, разрядник, нелинейный ограничитель перенапряжений или иное защитное устройство).

Отдельно стоящий молниеотвод - молниеотвод, молниеприемники и токоотводы которого расположены таким образом, чтобы путь тока молнии не имел контакта с защищаемым объектом.

Молниеотвод, установленный на защищаемом объекте - молниеотвод, молниеприемники и токоотводы которого расположены таким образом, что часть тока молнии может растекаться через защищаемый объект или его заземлитель.

Зона защиты молниеотвода - пространство в окрестности молниеотвода заданной геометрии, отличающееся тем, что вероятность удара молнии в объект, целиком размещенный в его объеме, не превышает заданной величины.

Допустимая вероятность прорыва молнии - предельно допустимая вероятность Р удара молнии в объект, защищаемый молниеотводами.

Надежность защиты определяется как 1 - Р.

Промышленные коммуникации - силовые и информационные кабели, проводящие трубопроводы, непроводящие трубопроводы с внутренней проводящей средой.

2.2. Классификация зданий и сооружений по устройству молниезащиты

Классификация объектов определяется по опасности ударов молнии для самого объекта и его окружения.

Непосредственное опасное воздействие молнии - это пожары, механические повреждения, травмы людей и животных, а также повреждения электрического и электронного оборудования. Последствиями удара молнии могут быть взрывы и выделение опасных продуктов - радиоактивных и ядовитых химических веществ, а также бактерий и вирусов.

Удары молнии могут быть особо опасны для информационных систем, систем управления, контроля и электроснабжения. Для электронных устройств, установленных в объектах разного назначения, требуется специальная защита.

Рассматриваемые объекты могут подразделяться на обычные и специальные.

Обычные объекты - жилые и административные строения, а также здания и сооружения, высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства.

Специальные объекты:
объекты, представляющие опасность для непосредственного окружения;
объекты, представляющие опасность для социальной и физической окружающей среды (объекты, которые при поражении молнией могут вызвать вредные биологические, химические и радиоактивные выбросы);
прочие объекты, для которых может предусматриваться специальная молниезащита, например, строения высотой более 60 м, игровые площадки, временные сооружения, строящиеся объекты.

В табл. 2.1 даны примеры разделения объектов на четыре класса.

Таблица 2.1

Примеры классификации объектов

Объект Тип объекта Последствия удара молнии
Обычный Жилой дом Отказ электроустановок, пожар и повреждение имущества. Обычно небольшое повреждение предметов, расположенных в месте удара молнии или задетых ее каналом
Ферма Первоначально - пожар и занос опасного напряжения, затем - потеря электропитания с риском гибели животных из-за отказа электронной системы управления вентиляцией, подачи корма и т. д.
Театр; школа; универмаг; спортивное сооружение Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий
Банк; страховая компания; коммерческий офис Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных
Больница; детский сад; дом для престарелых Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных. Необходимость помощи тяжелобольным и неподвижным людям
Промышленные предприятия Дополнительные последствия, зависящие от условий производства - от незначительных повреждений до больших ущербов из-за потерь продукции
Музеи и археологические памятники Невосполнимая потеря культурных ценностей
Специальный с ограниченной опасностью Средства связи; электростанции; пожароопасные производства Недопустимое нарушение коммунального обслуживания (телекоммуникаций). Косвенная опасность пожара для соседних объектов
Специальный, представляющий опасность для непосредственного окружения Нефтеперерабатывающие предприятия; заправочные станции; производства петард и фейерверков Пожары и взрывы внутри объекта и в непосредственной близости
Специальный, опасный для экологии Химический завод; атомная электростанция; биохимические фабрики и лаборатории Пожар и нарушение работы оборудования с вредными последствиями для окружающей среды

При строительстве и реконструкции для каждого класса объектов требуется определить необходимые уровни надежности защиты от прямых ударов молнии (ПУМ). Например, для обычных объектов может быть предложено четыре уровня надежности защиты, указанные в табл. 2.2.

Таблица 2.2

Уровни защиты от ПУМ для обычных объектов

Уровень защиты Надежность защиты от ПУМ
I 0,98
II 0,95
III 0,90
IV 0,80

Для специальных объектов минимально допустимый уровень надежности защиты от ПУМ устанавливается в пределах 0,9-0,999 в зависимости от степени его общественной значимости и тяжести ожидаемых последствий от ПУМ по согласованию с органами государственного контроля.

По желанию заказчика в проект может быть заложен уровень надежности, превышающий предельно допустимый.

2.3. Параметры токов молнии

Параметры токов молнии необходимы для расчета механических и термических воздействий, а также для нормирования средств защиты от электромагнитных воздействий.

2.3.1. Классификация воздействий токов молнии

Для каждого уровня молниезащиты должны быть определены предельно допустимые параметры тока молнии. Данные, приведенные в нормативе, относятся к нисходящим и восходящим молниям.

Соотношение полярностей разрядов молнии зависит от географического положения местности. В отсутствие местных данных принимают это соотношение равным 10 % для разрядов с положительными токами и 90 % для разрядов с отрицательными токами.

Механические и термические действия молнии обусловлены пиковым значением тока I, полным зарядом Q полн, зарядом в импульсе Q имп и удельной энергией W/R. Наибольшие значения этих параметров наблюдаются при положительных разрядах.

Повреждения, вызванные индуцированными перенапряжениями, обусловлены крутизной фронта тока молнии. Крутизна оценивается в пределах 30 %-ного и 90 %-ного уровней от наибольшего значения тока. Наибольшее значение этого параметра наблюдается в последующих импульсах отрицательных разрядов.

2.3.2. Параметры токов молнии, предлагаемые для нормирования средств защиты от прямых ударов молнии

Значения расчетных параметров для принятых в табл. 2.2 уровней защищенности (при соотношении 10 % к 90 % между долями положительных и отрицательных разрядов) приведены в табл. 2.3.

Таблица 2.3

Соответствие параметров тока молнии и уровней защиты

2.3.3. Плотность ударов молнии в землю

Плотность ударов молнии в землю, выраженная через число поражений 1 км 2 земной поверхности за год, определяется по данным метеорологических наблюдений в месте размещения объекта.

Если же плотность ударов молнии в землю N g неизвестна, ее можно рассчитать по следующей формуле, 1/(км 2 ·год):

, (2.1)

где Т d - средняя продолжительность гроз в часах, определенная по региональным картам интенсивности грозовой деятельности.

2.3.4. Параметры токов молнии, предлагаемые для нормирования средств защиты от электромагнитных воздействий молнии

Кроме механических и термических воздействий ток молнии создает мощные импульсы электромагнитного излучения, которые могут быть причиной повреждения систем, включающих оборудование связи, управления, автоматики, вычислительные и информационные устройства и т. п. Эти сложные и дорогостоящие системы используются во многих отраслях производства и бизнеса. Их повреждение в результате удара молнии крайне нежелательно по соображениям безопасности, а также по экономическим соображениям.

Удар молнии может содержать либо единственный импульс тока, либо состоять из последовательности импульсов, разделенных промежутками времени, за которые протекает слабый сопровождающий ток. Параметры импульса тока первого компонента существенно отличаются от характеристик импульсов последующих компонентов. Ниже приводятся данные, характеризующие расчетные параметры импульсов тока первого и последующих импульсов (табл. 2.4 и 2.5), а также длительного тока (табл. 2.6) в паузах между импульсами для обычных объектов при различных уровнях защиты.

Таблица 2.4

Параметры первого импульса тока молнии

Параметр тока Уровень защиты
I II III, IV
Максимум тока I, кА 200 150 100
Длительность фронта T 1 , мкс 10 10 10
Время полуспада Т 2 , мкс 350 350 350
Заряд в импульсе Q сум *, Кл 100 75 50
Удельная энергия в импульсе W/R**, МДж/Ом 10 5,6 2,5

________________
* Поскольку значительная часть общего заряда Q сум приходится на первый импульс, полагается, что общий заряд всех коротких импульсов равен приведенной величине.
** Поскольку значительная часть общей удельной энергии W/R приходится на первый импульс, полагается, что общий заряд всех коротких импульсов равен приведенной величине.

Таблица 2.5

Параметры последующего импульса тока молнии

Таблица 2.6

Параметры длительного тока молнии в промежутке между импульсами

______________
* Q дл - заряд, обусловленный длительным протеканием тока в период между двумя импульсами тока молнии.

Средний ток приблизительно равен Q дл /Т.

Форма импульсов тока определяется следующим выражением:

где I - максимум тока;
h - коэффициент, корректирующий значение максимума тока;
t - время;
τ 1 - постоянная времени для фронта;
τ 2 - постоянная времени для спада.

Значения параметров, входящих в формулу (2.2), описывающую изменение тока молнии во времени, приведены в табл. 2.7.

Таблица 2.7

Значения параметров для расчета формы импульса тока молнии

Параметр Первый импульс Последующий импульс
Уровень защиты Уровень защиты
I II III, IV I II III, IV
I, кА 200 150 100 50 37,5 25
h 0,93 0,93 0,93 0,993 0,993 0,993
τ 1 , мкс 19,0 19,0 19,0 0,454 0,454 0,454
τ 2 , мкс 485 485 485 143 143 143

Длительный импульс может быть принят прямоугольным со средним током I и длительностью Т, соответствующими данным табл. 2.6.

3. ЗАЩИТА ОТ ПРЯМЫХ УДАРОВ МОЛНИИ

3.1. Комплекс средств молниезащиты

Комплекс средств молниезащиты зданий или сооружений включает в себя устройства защиты от прямых ударов молнии (внешняя молниезащитная система - МЗС) и устройства защиты от вторичных воздействий молнии (внутренняя МЗС). В частных случаях молниезащита может содержать только внешние или только внутренние устройства. В общем случае часть токов молнии протекает по элементам внутренней молниезащиты.

Внешняя МЗС может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие функции естественных молниеотводов) или может быть установлена на защищаемом сооружении и даже быть его частью.

Внутренние устройства молниезащиты предназначены для ограничения электромагнитных воздействий тока молнии и предотвращения искрений внутри защищаемого объекта.

Токи молнии, попадающие в молниеприемники, отводятся в заземлитель через систему токоотводов (спусков) и растекаются в земле.

3.2. Внешняя молниезащитная система

Внешняя МЗС в общем случае состоит из молниеприемников, токоотводов и заземлителей. В случае специального изготовления их материал и сечения должны удовлетворять требованиям табл. 3.1.

Таблица 3.1

Материал и минимальные сечения элементов внешней МЗС

Примечание. Указанные значения могут быть увеличены в зависимости от повышенной коррозии или механических воздействий.

3.2.1. Молниеприемники

3.2.1.1. Общие соображения

Молниеприемники могут быть специально установленными, в том числе на объекте, либо их функции выполняют конструктивные элементы защищаемого объекта; в последнем случае они называются естественными молниеприемниками.

Молниеприемники могут состоять из произвольной комбинации следующих элементов: стержней, натянутых проводов (тросов), сетчатых проводников (сеток).

3.2.1.2. Естественные молниеприемники

Следующие конструктивные элементы зданий и сооружений могут рассматриваться как естественные молниеприемники:

    а) металлические кровли защищаемых объектов при условии, что:
      электрическая непрерывность между разными частями обеспечена на долгий срок;
      толщина металла кровли составляет не менее величины t, приведенной в табл. 3.2, если необходимо предохранить кровлю от повреждения или прожога;
      толщина металла кровли составляет не менее 0,5 мм, если ее необязательно защищать от повреждений и нет опасности воспламенения находящихся под кровлей горючих материалов;
      кровля не имеет изоляционного покрытия. При этом небольшой слой антикоррозионной краски или слой 0,5 мм асфальтового покрытия, или слой 1 мм пластикового покрытия не считается изоляцией;
      неметаллические покрытия на или под металлической кровлей не выходят за пределы защищаемого объекта;
    б) металлические конструкции крыши (фермы, соединенная между собой стальная арматура);
    в) металлические элементы типа водосточных труб, украшений, ограждений по краю крыши и т. п., если их сечение не меньше значений, предписанных для обычных молниеприемников;
    г) технологические металлические трубы и резервуары, если они выполнены из металла толщиной не менее 2,5 мм и проплавление или прожог этого металла не приведет к опасным или недопустимым последствиям;
    д) металлические трубы и резервуары, если они выполнены из металла толщиной не менее значения t, приведенного в табл. 3.2, и если повышение температуры с внутренней стороны объекта в точке удара молнии не представляет опасности.

Таблица 3.2

Толщина кровли, трубы или корпуса резервуара, выполняющих функции естественного молниеприемника

3.2.2. Токоотводы

3.2.2.1. Общие соображения

В целях снижения вероятности возникновения опасного искрения токоотводы должны располагаться таким образом, чтобы между точкой поражения и землей:

    а) ток растекался по нескольким параллельным путям;
    б) длина этих путей была ограничена до минимума.

3.2.2.2. Расположение токоотводов в устройствах молниезащиты, изолированных от защищаемого объекта

Если молниеприемник состоит из стержней, установленных на отдельно стоящих опорах (или одной опоре), на каждую опору должен быть предусмотрен минимум один токоотвод.

Если молниеприемник состоит из отдельно стоящих горизонтальных проводов (тросов) или из одного провода (троса), на каждый конец троса требуется минимум по одному токоотводу.

Если молниеприемник представляет собой сетчатую конструкцию, подвешенную над защищаемым объектом, на каждую ее опору требуется не менее одного токоотвода. Общее количество токоотводов должно быть не менее двух.

3.2.2.3. Расположение токоотводов при неизолированных устройствах молниезащиты

Токоотводы располагаются по периметру защищаемого объекта таким образом, чтобы среднее расстояние между ними было не меньше значений, приведенных в табл. 3.3.

Токоотводы соединяются горизонтальными поясами вблизи поверхности земли и через каждые 20 м по высоте здания.

Таблица 3.3

Средние расстояния между токоотводами в зависимости от уровня защищенности

Уровень защиты Среднее расстояние, м
I 10
II 15
III 20
IV 25

3.2.2.4. Указания по размещению токоотводов

Желательно, чтобы токоотводы равномерно располагались по периметру защищаемого объекта. По возможности они прокладываются вблизи углов зданий.

Не изолированные от защищаемого объекта токоотводы прокладываются следующим образом:

    если стена выполнена из негорючего материала, токоотводы могут быть закреплены на поверхности стены или проходить в стене;
    если стена выполнена из горючего материала, токоотводы могут быть закреплены непосредственно на поверхности стены, так чтобы повышение температуры при протекании тока молнии не представляло опасности для материала стены;
    если стена выполнена из горючего материала и повышение температуры токоотводов представляет для него опасность, токоотводы должны располагаться таким образом, чтобы расстояние между ними и защищаемым объектом всегда превышало 0,1 м. Металлические скобы для крепления токоотводов могут быть в контакте со стеной.

Не следует прокладывать токоотводы в водосточных трубах. Рекомендуется размещать токоотводы на максимально возможных расстояниях от дверей и окон.

Токоотводы прокладываются по прямым и вертикальным линиям, так чтобы путь до земли был по возможности кратчайшим. Не рекомендуется прокладка токоотводов в виде петель.

3.2.2.5. Естественные элементы токоотводов

Следующие конструктивные элементы зданий могут считаться естественными токоотводами:

    а) металлические конструкции при условии, что:
      электрическая непрерывность между разными элементами является долговечной и соответствует требованиям п. 3.2.4.2;
      они имеют не меньшие размеры, чем требуются для специально предусмотренных токоотводов. Металлические конструкции могут иметь изоляционное покрытие;
    б) металлический каркас здания или сооружения;
    в) соединенная между собой стальная арматура здания или сооружения;
    г) части фасада, профилированные элементы и опорные металлические конструкции фасада при условии, что их размеры соответствуют указаниям, относящимся к токоотводам, а их толщина составляет не менее 0,5 мм.

Металлическая арматура железобетонных строений считается обеспечивающей электрическую непрерывность, если она удовлетворяет следующим условиям:

    примерно 50 % соединений вертикальных и горизонтальных стержней выполнены сваркой или имеют жесткую связь (болтовое крепление, вязка проволокой);
    электрическая непрерывность обеспечена между стальной арматурой различных заранее заготовленных бетонных блоков и арматурой бетонных блоков, подготовленных на месте.

В прокладке горизонтальных поясов нет необходимости, если металлические каркасы здания или стальная арматура железобетона используются как токоотводы.

3.2.3. Заземлители

3.2.3.1. Общие соображения

Во всех случаях, за исключением использования отдельно стоящего молниеотвода, заземлитель молниезащиты следует совместить с заземлителями электроустановок и средств связи. Если эти заземлители должны быть разделены по каким-либо технологическим соображениям, их следует объединить в общую систему с помощью системы уравнивания потенциалов.

3.2.3.2. Специально прокладываемые заземляющие электроды

Целесообразно использовать следующие типы заземлителей: один или несколько контуров, вертикальные (или наклонные) электроды, радиально расходящиеся электроды или заземляющий контур, уложенный на дне котлована, заземляющие сетки.

Сильно заглубленные заземлители оказываются эффективными, если удельное сопротивление грунта уменьшается с глубиной и на большой глубине оказывается существенно меньше, чем на уровне обычного расположения.

Заземлитель в виде наружного контура предпочтительно прокладывать на глубине не менее 0,5 м от поверхности земли и на расстоянии не менее 1 м от стен. Заземляющие электроды должны располагаться на глубине не менее 0,5 м за пределами защищаемого объекта и быть как можно более равномерно распределенными; при этом надо стремиться свести к минимуму их взаимное экранирование.

Глубина закладки и тип заземляющих электродов выбираются из условия обеспечения минимальной коррозии, а также возможно меньшей сезонной вариации сопротивления заземления в результате высыхания и промерзания грунта.

3.2.3.3. Естественные заземляющие электроды

В качестве заземляющих электродов может использоваться соединенная между собой арматура железобетона или иные подземные металлические конструкции, отвечающие требованиям п. 3.2.2.5. Если арматура железобетона используется как заземляющие электроды, повышенные требования предъявляются к местам ее соединений, чтобы исключить механическое разрушение бетона. Если используется преднапряженный бетон, следует учесть возможные последствия протекания тока молнии, который может вызвать недопустимые механические нагрузки.

3.2.4. Крепление и соединения элементов внешней МЗС

3.2.4.1. Крепление

Молниеприемники и токоотводы жестко закрепляются, так чтобы исключить любой разрыв или ослабление крепления проводников под действием электродинамических сил или случайных механических воздействий (например, от порыва ветра или падения снежного пласта).

3.2.4.2. Соединения

Количество соединений проводника сводится к минимальному. Соединения выполняются сваркой, пайкой, допускается также вставка в зажимной наконечник или болтовое крепление.

3.3. Выбор молниеотводов

3.3.1. Общие соображения

Выбор типа и высоты молниеотводов производится исходя из значений требуемой надежности Р з. Объект считается защищенным, если совокупность всех его молниеотводов обеспечивает надежность защиты не менее Р з.

Во всех случаях система защиты от прямых ударов молнии выбирается так, чтобы максимально использовались естественные молниеотводы, а если обеспечиваемая ими защищенность недостаточна - в комбинации со специально установленными молниеотводами.

В общем случае выбор молниеотводов должен производиться при помощи соответствующих компьютерных программ, способных вычислять зоны защиты или вероятность прорыва молнии в объект (группу объектов) любой конфигурации при произвольном расположении практически любого числа молниеотводов различных типов.

При прочих равных условиях высоту молниеотводов можно снизить, если вместо стержневых конструкций применять тросовые, особенно при их подвеске по внешнему периметру объекта.

Если защита объекта обеспечивается простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры молниеотводов можно определять, пользуясь заданными в настоящем нормативе зонами защиты.

В случае проектирования молниезащиты для обычного объекта, возможно определение зон защиты по защитному углу или методом катящейся сферы согласно стандарту Международной электротехнической комиссии (IEC 1024) при условии, что расчетные требования Международной электротехнической комиссии оказываются более жесткими, чем требования настоящей Инструкции.

3.3.2. Типовые зоны защиты стержневых и тросовых молниеотводов

3.3.2.1. Зоны защиты одиночного стержневого молниеотвода

Стандартной зоной защиты одиночного стержневого молниеотвода высотой h является круговой конус высотой h 0

Приведенные ниже расчетные формулы (табл. 3.4) пригодны для молниеотводов высотой до 150 м. При более высоких молниеотводах следует пользоваться специальной методикой расчета.

Рис. 3.1. Зона защиты одиночного стержневого молниеотвода

Для зоны защиты требуемой надежности (рис. 3.1) радиус горизонтального сечения r x на высоте h x определяется по формуле:

(3.1)

Таблица 3.4

Расчет зоны защиты одиночного стержневого молниеотвода

Надежность защиты Р з Высота молниеотвода h, м Высота конуса h 0 , м Радиус конуса r 0 , м
0,9 От 0 до 100 0,85h 1,2h
От 100 до 150 0,85h h
0,99 От 0 до 30 0,8h 0,8h
От 30 до 100 0,8h h
От 100 до 150 h 0,7h
0,999 От 0 до 30 0,7h 0,6h
От 30 до 100 h h
От 100 до 150 h h

3.3.2.2. Зоны защиты одиночного тросового молниеотвода

Стандартные зоны защиты одиночного тросового молниеотвода высотой h ограничены симметричными двускатными поверхностями, образующими в вертикальном сечении равнобедренный треугольник с вершиной на высоте h 0

Приведенные ниже расчетные формулы (табл. 3.5) пригодны для молниеотводов высотой до 150 м. При большей высоте следует пользоваться специальным программным обеспечением. Здесь и далее под h понимается минимальная высота троса над уровнем земли (с учетом провеса).

Рис. 3.2. Зона защиты одиночного тросового молниеотвода:
L - расстояние между точками подвеса тросов

Полуширина r х зоны защиты требуемой надежности (рис. 3.2) на высоте h x от поверхности земли определяется выражением:

При необходимости расширить защищаемый объем к торцам зоны защиты собственно тросового молниеотвода могут добавляться зоны защиты несущих опор, которые рассчитываются по формулам одиночных стержневых молниеотводов, представленным в табл. 3.4. В случае больших провесов тросов, например, у воздушных линий электропередачи, рекомендуется рассчитывать обеспечиваемую вероятность прорыва молнии программными методами, поскольку построение зон защиты по минимальной высоте троса в пролете может привести к неоправданным затратам.

Таблица 3.5

Расчет зоны защиты одиночного тросового молниеотвода

Надежность защиты Р з Высота молниеотвода h, м Высота конуса h 0 , м Радиус конуса r 0 , м
0,9 От 0 до 150 0,87h 1,5h
0,99 От 0 до 30 0,8h 0,95h
От 30 до 100 0,8h h
От 100 до 150 0,8h h
0,999 От 0 до 30 0,75h 0,7h
От 30 до 100 h h
От 100 до 150 h h

3.3.2.3. Зоны защиты двойного стержневого молниеотвода

Молниеотвод считается двойным, когда расстояние между стержневыми молниеприемниками L не превышает предельной величины L max . В противном случае оба молниеотвода рассматриваются как одиночные.

Конфигурация вертикальных и горизонтальных сечений стандартных зон защиты двойного стержневого молниеотвода (высотой h и расстоянием L между молниеотводами) представлена на рис. 3.3. Построение внешних областей зон двойного молниеотвода (полуконусов с габаритами h 0 , r 0) производится по формулам табл. 3.4 для одиночных стержневых молниеотводов. Размеры внутренних областей определяются параметрами h 0 и h c , первый из которых задает максимальную высоту зоны непосредственно у молниеотводов, а второй - минимальную высоту зоны посередине между молниеотводами. При расстоянии между молниеотводами L ≤ L c граница зоны не имеет провеса (h c = h 0). Для расстояний L c ≤ L ≥ L max высота h c определяется по выражению

(3.3)

Входящие в него предельные расстояния L max и L c вычисляются по эмпирическим формулам табл. 3.6, пригодным для молниеотводов высотой до 150 м. При большей высоте молниеотводов следует пользоваться специальным программным обеспечением.

Размеры горизонтальных сечений зоны вычисляются по следующим формулам, общим для всех уровней надежности защиты:

Рис. 3.3. Зона защиты двойного стержневого молниеотвода

Таблица 3.6

Расчет параметров зоны защиты двойного стержневого молниеотвода

Надежность защиты Р з Высота молниеотвода h, м L max , м L 0 , м
0,9 От 0 до 30 5,75h 2,5h
От 30 до 100 h 2,5h
От 100 до 150 5,5h 2,5h
0,99 От 0 до 30 4,75h 2,25h
От 30 до 100 h h
От 100 до 150 4,5h 1,5h
0,999 От 0 до 30 4,25h 2,25h
От 30 до 100 h h
От 100 до 150 4,0h 1,5h

3.3.2.4. Зоны защиты двойного тросового молниеотвода

Молниеотвод считается двойным, когда расстояние между тросами L не превышает предельной величины L max . В противном случае оба молниеотвода рассматриваются как одиночные.

Конфигурация вертикальных и горизонтальных сечений стандартных зон защиты двойного тросового молниеотвода (высотой h и расстоянием между тросами L) представлена на рис. 3.4. Построение внешних областей зон (двух односкатных поверхностей с габаритами h 0 , r 0) производится по формулам табл. 3.5 для одиночных тросовых молниеотводов.

Рис. 3.4. Зона защиты двойного тросового молниеотвода

Размеры внутренних областей определяются параметрами h 0 и h c , первый из которых задает максимальную высоту зоны непосредственно у тросов, а второй - минимальную высоту зоны посередине между тросами. При расстоянии между тросами L≤L c граница зоны не имеет провеса (h c = h 0). Для расстояний L c &de;L≤L max высота h c определяется по выражению

(3.7)

Входящие в него предельные расстояния Lmax и Lc вычисляются по эмпирическим формулам табл. 3.7, пригодным для тросов с высотой подвеса до 150 м. При большей высоте молниеотводов следует пользоваться специальным программным обеспечением.

Длина горизонтального сечения зоны защиты на высоте h x определяется по формулам:

l x = L/2 при h c ≥ h x ;

(3.8)

Для расширения защищаемого объема на зону двойного тросового молниеотвода может быть наложена зона защиты опор, несущих тросы, которая строится как зона двойного стержневого молниеотвода, если расстояние L между опорами меньше L max , вычисленного по формулам табл. 3.6. В противном случае опоры должны рассматриваться как одиночные стержневые молниеотводы.

Когда тросы непараллельны или разновысоки, либо их высота изменяется по длине пролета, для оценки надежности их защиты следует воспользоваться специальным программным обеспечением. Также рекомендуется поступать при больших провесах тросов в пролете, чтобы избежать излишних запасов по надежности защиты.

Таблица 3.7

Расчет параметров зоны защиты двойного тросового молниеотвода

Надежность защиты Р з Высота молниеотвода h, м L max , м L c , м
0,9 от 0 до 150 6,0h 3,0h
0,99 от 0 до 30 5,0h 2,5h
от 30 до 100 5,0h h
от 100 до 150 h h
0,999 от 0 до 30 4,75h 2,25h
от 30 до 100 h h
от 100 до 150 h h

3.3.2.5 Зоны защиты замкнутого тросового молниеотвода

Расчетные формулы п. 3.3.2.5 могут использоваться для определения высоты подвеса замкнутого тросового молниеотвода, предназначенного для защиты с требуемой надежностью объектов высотой h 0

Рис. 3.5. Зона защиты замкнутого тросового молниеотвода

Для расчета h используется выражение:

h = A + Bh 0 , (3.9)

в котором константы А и В определяются в зависимости от уровня надежности защиты по следующим формулам:

а) надежность защиты Р з = 0,99

б) надежность защиты Р з = 0,999

Расчетные соотношения справедливы, когда D > 5 м. Работа с меньшими горизонтальными смещениями троса нецелесообразна из-за высокой вероятности обратных перекрытий молнии с троса на защищаемый объект. По экономическим соображениям замкнутые тросовые молниеотводы не рекомендуются, когда требуемая надежность защиты меньше 0,99.

Если высота объекта превышает 30 м, высота замкнутого тросового молниеотвода определяется с помощью программного обеспечения. Также следует поступать для замкнутого контура сложной формы.

После выбора высоты молниеотводов по их зонам защиты рекомендуется проверить фактическую вероятность прорыва компьютерными средствами, а в случае большого запаса по надежности провести корректировку, задавая меньшую высоту молниеотводов.

Ниже приводятся правила определения зон защиты для объектов высотой до 60 м, изложенные в стандарте МЭК (IEC 1024-1-1). При проектировании может быть выбран любой способ защиты, однако практика показывает целесообразность использования отдельных методов в следующих случаях:

    метод защитного угла используется для простых по форме сооружений или для маленьких частей больших сооружений;
    метод фиктивной сферы подходит для сооружений сложной формы;
    применение защитной сетки целесообразно в общем случае и особенно для защиты поверхностей.

В табл. 3.8 для уровней защиты I - IV приводятся значения углов при вершине зоны защиты, радиусы фиктивной сферы, а также предельно допустимый шаг ячейки сетки.

Таблица 3.8

Параметры для расчета молниеприемников по рекомендациям МЭК

Уровень защиты Радиус фиктивной сферы R, м Угол a , °, при вершине молниеотвода для зданий различной высоты h, м Шаг ячейки сетки, м
20 30 45 60
I 20 25 * * * 5
II 30 35 25 * * 10
III 45 45 35 25 * 10
IV 60 55 45 35 25 20

_______________
* В этих случаях применимы только сетки или фиктивные сферы.

Стержневые молниеприемники, мачты и тросы размещаются так, чтобы все части сооружения находились в зоне защиты, образованной под углом a к вертикали. Защитный угол выбирается по табл. 3.8, причем h является высотой молниеотвода над поверхностью, которая будет защищена.

Метод защитного угла не используется, если h больше, чем радиус фиктивной сферы, определенный в табл. 3.8 для соответствующего уровня защиты.

Метод фиктивной сферы используется, чтобы определить зону защиты для части или областей сооружения, когда согласно табл. 3.4 исключено определение зоны защиты по защитному углу. Объект считается защищенным, если фиктивная сфера, касаясь поверхности молниеотвода и плоскости, на которой тот установлен, не имеет общих точек с защищаемым объектом.

Сетка защищает поверхность, если выполнены следующие условия:

    проводники сетки проходят по краю крыши, если крыша выходит за габаритные размеры здания;
    проводник сетки проходит по коньку крыши, если наклон крыши превышает 1/10;
    боковые поверхности сооружения на уровнях выше, чем радиус фиктивной сферы (см. табл. 3.8), защищены молниеотводами или сеткой;
    размеры ячейки сетки не больше приведенных в табл. 3.8;
    сетка выполнена таким способом, чтобы ток молнии имел всегда, по крайней мере, два различных пути к заземлителю;
    никакие металлические части не должны выступать за внешние контуры сетки.

Проводники сетки должны быть проложены, насколько это возможно, кратчайшими путями.

3.3.4. Защита электрических металлических кабельных линий передачи магистральной и внутризоновых сетей связи

3.3.4.1. Защита вновь проектируемых кабельных линий

На вновь проектируемых и реконструируемых кабельных линиях магистральной и внутризоновых сетей 1 связи защитные мероприятия следует предусматривать в обязательном порядке на тех участках, где вероятная плотность повреждений (вероятное число опасных ударов молнии) превышает допустимую, указанную в табл. 3.9.

___________________
1 Магистральные сети - сети для передачи информации на большие расстояния; внутризоновые сети - сети для передачи информации между областными и районными центрами.

Таблица 3.9

Допустимое число опасных ударов молнии на 100 км трассы в год для электрических кабелей связи

Тип кабеля Допустимое расчетное число опасных ударов молнии на 100 км трассы в год n 0
в горных районах и районах со скальным грунтом при удельном сопротивлении выше 500 Ом·м и в районах вечной мерзлоты в остальных районах
Симметричные одночетверочные и однокоаксиальные 0,2 0,3
Симметричные четырех- и семичетверочные 0,1 0,2
Многопарные коаксиальные 0,1 0,2
Кабели зоновой связи 0,3 0,5

3.3.4.2. Защита новых линий, прокладываемых вблизи уже существующих

Если проектируемая кабельная линия прокладывается вблизи существующей кабельной магистрали и известно фактическое число повреждений последней за время эксплуатации сроком не менее 10 лет, то при проектировании защиты кабеля от ударов молнии норма на допустимую плотность повреждений должна учитывать отличие фактической и расчетной повреждаемости существующей кабельной линии.

В этом случае допустимая плотность n 0 повреждений проектируемой кабельной линии находится умножением допустимой плотности из табл. 3.9 на отношение расчетной n р и фактической n ф повреждаемостей существующего кабеля от ударов молнии на 100 км трассы в год:

.

3.3.4.3. Защита существующих кабельных линий

На существующих кабельных линиях защитные мероприятия осуществляются на тех участках, где произошли повреждения от ударов молнии, причем длина защищаемого участка определяется условиями местности (протяженностью возвышенности или участка с повышенным удельным сопротивлением грунта и т. п.), но принимается не менее 100 м в каждую сторону от места повреждения. В этих случаях предусматривается прокладка грозозащитных тросов в земле. Если повреждается кабельная линия, уже имеющая защиту, то после устранения повреждения производится проверка состояния средств грозозащиты и только после этого принимается решение об оборудовании дополнительной защиты в виде прокладки тросов или замены существующего кабеля на более стойкий к разрядам молнии. Работы по защите должны осуществляться сразу после устранения грозового повреждения.

3.3.5. Защита оптических кабельных линий передачи магистральной и внутризоновых сетей связи

3.3.5.1. Допустимое число опасных ударов молнии в оптические линии магистральной и внутризоновых сетей связи

На проектируемых оптических кабельных линиях передачи магистральной и внутризоновых сетей связи защитные мероприятия от повреждений ударами молнии предусматриваются в обязательном порядке на тех участках, где вероятное число опасных ударов молнии (вероятная плотность повреждений) в кабели превышает допустимое число, указанное в табл. 3.10.

Таблица 3.10

Допустимое число опасных ударов молнии на 100 км трассы в год для оптических кабелей связи

При проектировании оптических кабельных линий передачи предусматривается использование кабелей, имеющих категорию по молниестойкости не ниже приведенных в табл. 3.11, в зависимости от назначения кабелей и условий прокладки. В этом случае при прокладке кабелей на открытой местности защитные меры могут потребоваться крайне редко, только в районах с высоким удельным сопротивлением грунта и повышенной грозовой деятельностью.

Таблица 3.11

3.3.5.3. Защита существующих оптических кабельных линий

На существующих оптических кабельных линиях передачи защитные мероприятия осуществляются на тех участках, где произошли повреждения от ударов молнии, причем длина защищаемого участка определяется условиями местности (протяженностью возвышенности или участка с повышенным удельным сопротивлением грунта и т. п.), но должна быть не менее 100 м в каждую сторону от места повреждения. В этих случаях необходимо предусматривать прокладку защитных проводов.

Работы по оборудованию защитных мер должны осуществляться сразу после устранения грозового повреждения.

3.3.6. Защита от ударов молнии электрических и оптических кабелей связи, проложенных в населенном пункте

При прокладке кабелей в населенном пункте, кроме случая пересечения и сближения с ВЛ напряжением 110 кВ и выше, защита от ударов молнии не предусматривается.

3.3.7. Защита кабелей, проложенных вдоль опушки леса, вблизи отдельно стоящих деревьев, опор, мачт

Защита кабелей связи, проложенных вдоль опушки леса, а также вблизи объектов высотой более 6 м (отдельно стоящих деревьев, опор линий связи, линий электропередачи, мачт молниеотводов и т. п.) предусматривается, если расстояние между кабелем и объектом (или его подземной частью) менее расстояний, приведенных в табл. 3.12 для различных значений удельного сопротивления земли.

Таблица 3.12

Допустимые расстояния между кабелем и заземляющим контуром (опорой)

4. ЗАЩИТА ОТ ВТОРИЧНЫХ ВОЗДЕЙСТВИЙ МОЛНИИ

4.1. Общие положения

В разделе 4 изложены основные принципы защиты от вторичных воздействий молнии электрических и электронных систем с учетом рекомендаций МЭК (стандарт 61312). Эти системы используются во многих отраслях производства, применяющих достаточно сложное и дорогостоящее оборудование. Они более чувствительны к воздействию молнии, чем устройства предыдущих поколений, поэтому необходимо применять специальные меры по их защите от опасных воздействий молнии.

Пространство, в котором расположены электрические и электронные системы, должно быть разделено на зоны различной степени защиты. Зоны характеризуются существенным изменением электромагнитных параметров на границах. В общем случае, чем выше номер зоны, тем меньше значения параметров электромагнитных полей, токов и напряжений в пространстве зоны.

Зона 0 - зона, где каждый объект подвержен прямому удару молнии, и поэтому через него может протекать полный ток молнии. В этой области электромагнитное поле имеет максимальное значение.

Зона 0 Е - зона, где объекты не подвержены прямому удару молнии, но электромагнитное поле не ослаблено и также имеет максимальное значение.

Зона 1 - зона, где объекты не подвержены прямому удару молнии, и ток во всех проводящих элементах внутри зоны меньше, чем в зоне 0 Е; в этой зоне электромагнитное поле может быть ослаблено экранированием.

Прочие зоны устанавливаются, если требуется дальнейшее уменьшение тока и/или ослабление электромагнитного поля; требования к параметрам зон определяются в соответствии с требованиями к защите различных зон объекта.

Общие принципы разделения защищаемого пространства на зоны молниезащиты показаны на рис. 4.1.

На границах зон должны осуществляться меры по экранированию и соединению всех пересекающих границу металлических элементов и коммуникаций.

Две пространственно разделенные зоны 1 с помощью экранированного соединения могут образовать общую зону (рис. 4.2).

Рис. 4.1. Зоны защиты от воздействия молнии:
1 - ЗОНА 0 (внешнее окружение); 2 - ЗОНА 1 (внутренняя электромагнитная обстановка); 3 - ЗОНА 2; 4 - ЗОНА 2 (обстановка внутри шкафа); 5 - ЗОНА 3

Рис. 4.2. Объединение двух зон

4.3. Экранирование

Экранирование является основным способом уменьшения электромагнитных помех.

Металлическая конструкция строительного сооружения используется или может быть использована в качестве экрана. Подобная экранная структура образуется, например, стальной арматурой крыши, стен, полов здания, а также металлическими деталями крыши, фасадов, стальными каркасами, решетками. Эта экранирующая структура образует электромагнитный экран с отверстиями (за счет окон, дверей, вентиляционных отверстий, шага сетки в арматуре, щелей в металлическом фасаде, отверстий для линий электроснабжения и т. п.). Для уменьшения влияния электромагнитных полей все металлические элементы объекта электрически объединяются и соединяются с системой молниезащиты (рис. 4.3).

Если кабели проходят между соседними объектами, заземлители последних соединяются для увеличения числа параллельных проводников и уменьшения, благодаря этому, токов в кабелях. Такому требованию хорошо удовлетворяет система заземления в виде сетки. Для уменьшения индуцированных помех можно использовать:

    внешнее экранирование;
    рациональную прокладку кабельных линий;
    экранирование линий питания и связи.

Все эти мероприятия могут быть выполнены одновременно.

Если внутри защищаемого пространства имеются экранированные кабели, их экраны соединяются с системой молниезащиты на обоих концах и на границах зон.

Кабели, идущие от одного объекта к другому, по всей длине укладываются в металлические трубы, сетчатые короба или железобетонные короба с сетчатой арматурой. Металлические элементы труб, коробов и экраны кабелей соединяются с указанными общими шинами объектов. Можно не использовать металлические коробы или лотки, если экраны кабелей способны выдержать предполагаемый ток молнии.

Рис. 4.3. Объединение металлических элементов объекта для уменьшения влияния электромагнитных полей:

1 - сварка на пересечениях проводов; 2 - массивная непрерывная дверная рама; 3 - сварка на каждом стержне

4.4. Соединения

Соединения металлических элементов необходимы для уменьшения разности потенциалов между ними внутри защищаемого объекта. Соединения находящихся внутри защищаемого пространства и пересекающих границы зон молниезащиты металлических элементов и систем выполняются на границах зон. Осуществлять соединения следует с помощью специальных проводников или зажимов и, когда это необходимо, с помощью устройств защиты от перенапряжений.

4.4.1. Соединения на границах зон

Все входящие снаружи в объект проводники соединяются с системой молниезащиты.

Если внешние проводники, силовые кабели или кабели связи входят в объект в различных точках, и поэтому имеется несколько общих шин, последние присоединяются по кратчайшему пути к замкнутому контуру заземления или арматуре конструкции и металлической внешней облицовке (при ее наличии). Если замкнутого контура заземления нет, указанные общие шины присоединяются к отдельным заземляющим электродам и соединяются внешним кольцевым проводником или разорванным кольцом. Если внешние проводники входят в объект над землей, общие шины присоединяются к горизонтальному кольцевому проводнику внутри или снаружи стен. Этот проводник, в свою очередь, соединяется с нижними проводниками и арматурой.

Проводники и кабели, входящие в объект на уровне земли, рекомендуется соединять с системой молниезащиты на этом же уровне. Общая шина в точке входа кабелей в здание располагается как можно ближе к заземлителю и арматуре конструкции, с которыми она соединена.

Кольцевой проводник соединяется с арматурой или другими экранирующими элементами, такими как металлическая облицовка, через каждые 5 м. Минимальное поперечное сечение медных или стальных оцинкованных электродов - 50 мм 2 .

Общие шины для объектов, имеющих информационные системы, где влияние токов молнии предполагается свести к минимуму, следует изготавливать из металлических пластин с большим числом присоединений к арматуре или другим экранирующим элементам.

Для контактных соединений и устройств защиты от перенапряжений, расположенных на границах зон 0 и 1, принимаются параметры токов, указанные в табл. 2.3. При наличии нескольких проводников необходимо учитывать распределение токов по проводникам.

Для проводников и кабелей, входящих в объект на уровне земли, оценивается проводимая ими часть тока молнии.

Сечения соединительных проводников определяются согласно табл. 4.1 и 4.2. Табл. 4.1 используется, если через проводящий элемент протекает более 25 % тока молнии, а табл. 4.2 - если менее 25 %.

Таблица 4.1

Сечения проводников, через которые протекает большая часть тока молнии

Таблица 4.2

Сечения проводников, через которые протекает незначительная часть тока молнии

Устройство защиты от перенапряжений выбирается выдерживающим часть тока молнии, ограничивающим перенапряжения и обрывающим сопровождающие токи после главных импульсов.

Максимальное перенапряжение U max на входе в объект координируется с выдерживаемым напряжением системы.

Чтобы значение U max сводилось к минимуму, линии присоединяются к общей шине проводниками минимальной длины.

Все проводящие элементы, такие как кабельные линии, пересекающие границы зон молниезащиты, соединяются на этих границах. Соединение осуществляется на общей шине, к которой также присоединяются экранирующие и другие металлические элементы (например, корпуса оборудования).

Для контактных зажимов и устройств подавления перенапряжений параметры тока оцениваются в каждом отдельном случае. Максимальное перенапряжение на каждой границе координируется с выдерживаемым напряжением системы. Устройства защиты от перенапряжений на границах различных зон также координируются по энергетическим характеристикам.

4.4.2. Соединения внутри защищаемого объема

Все внутренние проводящие элементы значительных размеров, такие как направляющие лифтов, краны, металлические полы, рамы металлических дверей, трубы, кабельные лотки присоединяются к ближайшей общей шине или другому общему соединительному элементу по кратчайшему пути. Желательны и дополнительные соединения проводящих элементов.

Поперечные сечения соединительных проводников указаны в табл. 4.2. Предполагается, что в соединительных проводниках проходит только незначительная часть тока молнии.

Все открытые проводящие части информационных систем соединяются в единую сеть. В особых случаях такая сеть может не иметь соединения с заземлителем.

Есть два способа присоединения к заземлителю металлических частей информационных систем, таких как корпуса, оболочки или каркасы: соединения выполняются в виде радиальной системы или в виде сетки.

При использовании радиальной системы все ее металлические части изолируются от заземлителя на всем протяжении кроме единственной точки соединения с ним. Обычно такая система используется для относительно небольших объектов, где все элементы и кабели входят в объект в одной точке.

Радиальная система заземления присоединяется к общей системе заземления только в одной точке (рис. 4.4). В этом случае все линии и кабели между устройствами оборудования должны прокладываться параллельно образующим звезду проводникам заземления для уменьшения петли индуктивности. Благодаря заземлению в одной точке токи низкой частоты, появляющиеся при ударе молнии, не попадают в информационную систему. Кроме того, источники низкочастотных помех внутри информационной системы не создают токов в системе заземления. Ввод в защитную зону проводов производится исключительно в центральной точке системы уравнивания потенциалов. Указанная общая точка является также наилучшим местом присоединения устройств защиты от перенапряжений.

При использовании сетки ее металлические части не изолируются от общей системы заземления (рис. 4.5). Сетка соединяется с общей системой во многих точках. Обычно сетка используется для протяженных открытых систем, где оборудование связано большим числом различных линий и кабелей и где они входят в объект в различных точках. В этом случае вся система обладает низким сопротивлением на всех частотах. Кроме того, большое число короткозамкнутых контуров сетки ослабляет магнитное поле вблизи информационной системы. Приборы в защитной зоне соединяются друг с другом по кратчайшим расстояниям несколькими проводниками, а также с металлическими частями защищенной зоны и экраном зоны. При этом максимально используются имеющиеся в устройстве металлические части, такие как арматура в полу, стенах и на крыше, металлические решетки, металлическое оборудование неэлектрического назначения, такое, как трубы, вентиляционные и кабельные короба.

Рис. 4.4. Схема соединения проводов электропитания и связи при звездообразной системе уравнивания потенциалов:
1 - экран защитной зоны; 2 - электрическая изоляция; 3 - провод системы уравнивания потенциалов; 4 - центральная точка системы уравнивания потенциалов; 5 - провода связи, электропитания

Рис. 4.5. Сетчатое выполнение системы уравнивания потенциалов:
1 - экран защитной зоны; 2 - проводник уравнивания потенциалов

Рис. 4.6. Комплексное выполнение системы уравнивания потенциалов:
1 - экран защитной зоны; 2 - электрическая изоляция; 3 - центральная точка системы уравнивания потенциалов

Обе конфигурации, радиальная и сетка, могут быть объединены в комплексную систему как показано на рис. 4.6. Обычно, хотя это и не обязательно, соединение локальной сети заземления с общей системой осуществляется на границе зоны молниезащиты.

4.5. Заземление

Основная задача заземляющего устройства молниезащиты - отвести как можно большую часть тока молнии (50 % и более) в землю. Остальная часть тока растекается по подходящим к зданию коммуникациям (оболочкам кабелей, трубам водоснабжения и т. п.) При этом не возникают опасные напряжения на самом заземлителе. Эта задача выполняется сетчатой системой под зданием и вокруг него. Заземляющие проводники образуют сетчатый контур, объединяющий арматуру бетона внизу фундамента. Это обычный метод создания электромагнитного экрана внизу здания. Кольцевой проводник вокруг здания и/или в бетоне на периферии фундамента соединяется с системой заземления заземляющими проводниками обычно через каждые 5 м. Внешний заземлитель проводник может быть соединен с указанными кольцевыми проводниками.

Арматура бетона внизу фундамента соединяется с системой заземления. Арматура должна образовывать сетку, соединенную с системой заземления обычно через каждые 5 м.

Можно использовать сетку из оцинкованной стали с шириной ячейки обычно 5 м, приваренную или механически прикрепленную к прутьям арматуры обычно через каждый 1 м. Концы проводников сетки могут служить заземляющими проводниками для соединительных полос. На рис. 4.7 и 4.8 показаны примеры сетчатого заземляющего устройства.

Связь заземлителя и системы соединений создает систему заземления. Основная задача системы заземления - уменьшать разность потенциалов между любыми точками здания и оборудования. Эта задача решается созданием большого количества параллельных путей для токов молнии и наведенных токов, образующих сеть с низким сопротивлением в широком спектре частот. Множественные и параллельные пути имеют различные резонансные частоты. Множество контуров с частотно-зависимыми сопротивлениями создают единую сеть с низким сопротивлением для помех рассматриваемого спектра.

4.6. Устройства защиты от перенапряжений

Устройства защиты от перенапряжений (УЗП) устанавливаются в месте пересечения линией электроснабжения, управления, связи, телекоммуникации границы двух зон экранирования. УЗП координируют для достижения приемлемого распределения нагрузки между ними в соответствии с их стойкостью к разрушению, а также для уменьшения вероятности разрушения защищаемого оборудования под воздействием тока молнии (рис. 4.9).

Рис. 4.9. Пример установки УЗП в здании

Рекомендуется входящие в здание линии питания и связи соединять одной шиной и располагать их УЗП как можно ближе одно к другому. Это особенно важно в зданиях из неэкранирующего материала (дерева, кирпича и т. п.). УЗП выбираются и устанавливаются так, чтобы ток молнии был в основном отведен в систему заземления на границе зон 0 и 1.

Так как энергия тока молнии в основном рассеивается на указанной границе, последующие УЗП защищают лишь от оставшейся энергии и воздействия электромагнитного поля в зоне 1. Для наилучшей защиты от перенапряжений при установке УЗП используют короткие соединительные проводники, выводы и кабели.

Исходя из требований координации изоляции в силовых установках и устойчивости к повреждениям защищаемого оборудования, необходимо выбирать уровень УЗП по напряжению ниже максимального значения, чтобы воздействие на защищаемое оборудование всегда было ниже допустимого напряжения. Если уровень устойчивости к повреждениям неизвестен, следует использовать ориентировочный или полученный в результате испытаний уровень. Количество УЗП в защищаемой системе зависит от устойчивости защищаемого оборудования к повреждениям и характеристик самих УЗП.

4.7. Защита оборудования в существующих зданиях

Все возрастающее использование сложного электронного оборудования в уже существующих зданиях требует более надежной защиты от молнии и других электромагнитных помех. Принимается во внимание, что в существующих зданиях необходимые меры по молниезащите выбирают с учетом особенностей здания, таких как конструктивные элементы, существующее силовое и информационное оборудование.

Необходимость в защитных мерах и их выбор определяют на основании исходных данных, которые собирают на стадии предпроектных изысканий. Примерный перечень таких данных приведен в табл. 4.3-4.6.

Таблица 4.3

Исходные данные о здании и окружении

№ п/п Характеристика
1 Материал здания - каменная кладка, кирпич, дерево, железобетон, стальной каркас
2 Единое здание или несколько отдельных блоков с большим количеством соединений
3 Низкое и плоское или высокое здание (размеры здания)
4 Соединена ли арматура по всему зданию?
5 Соединена ли электрически металлическая облицовка?
6 Размеры окон
7 Имеется ли внешняя система молниезащиты?
8 Тип и качество внешней системы молниезащиты
9 Тип почвы (камень, земля)
10 Заземленные элементы соседних зданий (высота, расстояние до них)

Таблица 4.4

Исходные данные по оборудованию

№ п/п Характеристика
1 Входящие линии (подземные или воздушные)
2 Антенны или другие внешние устройства
3 Тип системы питания (высоковольтная или низковольтная, подземная или надземная)
4 Прокладка кабелей (число и расположение вертикальных участков, способ прокладки кабелей)
5 Использование металлических кабельных лотков
6 Имеется ли внутри здания электронное оборудование?
7 Есть ли проводники, отходящие к другим зданиям?

Таблица 4.5

Характеристики оборудования

Таблица 4.6

Другие данные, касающиеся выбора концепции защиты

На основании анализа риска и данных, приведенных в табл. 4.3-4.6, принимается решение о необходимости построения или реконструкции системы молниезащиты.

4.7.1 Меры защиты при использовании внешней системы молниезащиты

Основная задача - нахождение оптимального решения по улучшению внешней системы молниезащиты и по другим мерам.

Усовершенствование внешней системы молниезащиты достигается:

    1) включением внешней металлической облицовки и крыши здания в систему молниезащиты;
    2) использованием дополнительных проводников, если арматура соединена по всей высоте здания - от крыши через стены до заземления здания;
    3) уменьшением промежутков между металлическими спусками и уменьшением шага ячейки молниеприемника;
    4) установкой соединительных полос (гибких плоских проводников) в местах стыков между соседними, но структурно разделенными блоками. Расстояние между полосами должно быть вдвое меньше расстояния между спусками;
    5) соединением протяженного провода с отдельными блоками здания. Обычно соединения необходимы на каждом углу кабельного лотка, и соединительные полосы выполняются как можно короче;
    6) защитой отдельными молниеприемниками, соединенными с общей системой молниезащиты, если металлические части крыши нуждаются в защите от прямого удара молнии. Молниеприемник должен находиться на безопасном расстоянии от указанного элемента.

4.7.2. Меры защиты при использовании кабелей

Эффективными мерами по снижению перенапряжений являются рациональная прокладка и экранирование кабелей. Эти меры тем важнее, чем меньше экранирует внешняя система молниезащиты.

Больших петель можно избежать, прокладывая совместно силовые кабели и экранированные кабели связи. Экран соединяется с оборудованием на обоих концах.

Любое дополнительное экранирование, например, прокладка проводов и кабелей в металлических трубах или лотках между этажами, снижает полное сопротивление общей системы соединений. Эти меры наиболее важны для высоких или протяженных зданий или когда оборудование должно работать особенно надежно.

Предпочтительными местами установки УЗП являются границы зон 0/1 и зон 0/1/2 соответственно, расположенные на входе в здание.

Как правило, общая сеть соединений не используется в рабочем режиме как обратный проводник силовой или информационной цепи.

4.7.3. Меры защиты при использовании антенн и другого оборудования

Примерами такого оборудования являются различные внешние устройства, такие как антенны, метеорологические датчики, камеры наружного наблюдения, наружные датчики на промышленных объектах (датчики давления, температуры, скорости потока, положения клапана и т. д.) и любое другое электрическое, электронное и радиооборудование, установленное снаружи на здании, мачте, или промышленном резервуаре.

По возможности молниеотвод устанавливается таким образом, чтобы оборудование было защищено от прямого попадания молнии. Отдельные антенны оставляют абсолютно открытыми по технологическим соображениям. Некоторые из них имеют встроенную систему молниезащиты и могут без повреждений выдержать попадание молнии. Другие, менее защищенные типы антенн, могут требовать установки УЗП на питающем кабеле, чтобы предотвратить попадание тока молнии по кабелю антенны в приемник или передатчик. При наличии внешней системы молниезащиты крепления антенны присоединяются к ней.

Наведение напряжения в кабелях между зданиями можно предотвратить, прокладывая их в соединенных металлических лотках или трубах. Все кабели, идущие к связанному с антенной оборудованию, прокладываются с выводом из трубы в одной точке. Следует обратить максимальное внимание на экранирующие свойства самого объекта и прокладывать кабели в его трубчатых элементах. Если это невозможно, как в случае с технологическими емкостями, кабели следует прокладывать снаружи, но как можно ближе к объекту, максимально используя при этом такие естественные экраны, как металлические лестницы, трубы и др. В мачтах с L-образными угловыми элементами кабели располагаются внутри угла для максимальной естественной защиты. В крайнем случае рядом с кабелем антенны следует разместить эквипотенциальный соединительный проводник с минимальным поперечным сечением 6 мм 2 . Все эти меры снижают наведенное напряжение в петле, образованной кабелями и зданием, и, соответственно, уменьшают вероятность пробоя между ними, т. е. вероятность возникновения дуги внутри оборудования между электросетью и зданием.

4.7.4. Меры защиты силовых кабелей и кабелей связи между зданиями

Связи между зданиями подразделяются на два главных типа: силовые кабели с металлической оболочкой, металлические (витая пара, волноводы, коаксиальные и многожильные кабели) и оптоволоконные кабели. Защитные меры зависят от типов кабелей, их количества, а также от того, соединены ли системы молниезащиты двух зданий.

Полностью изолированный оптоволоконный кабель (без металлического армирования, фольги для защиты от влаги или стального внутреннего проводника) может быть применен без дополнительных мер защиты. Использование такого кабеля является наилучшим вариантом, так как обеспечивает полную защиту от электромагнитных воздействий. Однако если кабель содержит протяженный металлический элемент (за исключением жил дистанционного питания), последний должен быть на входе в здание присоединен к общей системе соединений и не должен напрямую входить в оптический приемник или передатчик. Если здания расположены близко друг к другу и их системы молниезащиты не соединены, предпочтительнее использовать оптоволоконный кабель без металлических элементов во избежание больших токов в этих элементах и их перегрева. Если же имеется соединенный с системой молниезащиты кабель, то можно использовать оптический кабель с металлическими элементами, чтобы отвести часть тока от первого кабеля.

Металлические кабели между зданиями с изолированными системами молниезащиты. При данном соединении систем защиты повреждения весьма вероятны на обоих концах кабеля вследствие прохождения по нему тока молнии. Поэтому на обоих концах кабеля необходимо установить УЗП, а также, где возможно, следует соединять системы молниезащиты двух зданий и прокладывать кабель в соединенных металлических лотках.

Металлические кабели между зданиями с соединенными системами молниезащиты. В зависимости от числа кабелей между зданиями защитные меры могут включать соединение кабельных лотков при нескольких кабелях (для новых кабелей) или при большом количестве кабелей, как в случае с химическим производством, экранирование или применение гибких металлошлангов для многожильных кабелей управления. Подсоединение обоих концов кабеля к связанным системам молниезащиты часто обеспечивает достаточное экранирование, особенно если кабелей много и ток распределится между ними.

1. Разработка эксплуатационно-технической документации

Во всех организациях и предприятиях независимо от форм собственности рекомендуется иметь комплект эксплуатационно-технической документации молниезащиты объектов, для которых необходимо устройство молниезащиты.

Комплект эксплуатационно-технической документации молниезащиты содержит:

    пояснительную записку;
    схемы зон защиты молниеотводов;
    рабочие чертежи конструкций молниеотводов (строительная часть), конструктивных элементов защиты от вторичных проявлений молнии, от заносов высоких потенциалов через наземные и подземные металлические коммуникации, от скользящих искровых каналов и разрядов в грунте;
    приемочную документацию (акты приемки в эксплуатацию устройств молниезащиты вместе с приложениями: актами на скрытые работы и актами испытаний устройств молниезащиты и защиты от вторичных проявлений молнии и заноса высоких потенциалов).

В пояснительной записке приводятся:

    исходные данные разработки технической документации;
    принятые способы молниезащиты объектов;
    расчеты зон защиты, заземлителей, токоотводов и элементов защиты от вторичных проявлений молнии.

В пояснительной записке указываются предприятие-разработчик комплекта эксплуатационно-технической документации, основание для его разработки, перечень действующих нормативных документов и технической документации, которыми руководствовались при работе над проектом, специальные требования к проектируемому устройству.

Исходные данные для проектирования молниезащиты включают:

    генеральный план объектов с указанием расположения всех объектов, подлежащих молниезащите, автомобильных и железных дорог, наземных и подземных коммуникаций (теплотрасс, технологических и сантехнических трубопроводов, электрических кабелей и проводок любого назначения и т. п.);
    категории молниезащиты каждого объекта;
    данные о климатических условиях в районе размещения защищаемых зданий и сооружений (интенсивности грозовой деятельности, скоростном напоре ветра, толщине стенки гололеда и т. п.), характеристику грунта с указанием структуры, агрессивности и рода почвы, уровня грунтовых вод;
    удельное электрическое сопротивление грунта (Ом·м) в местах расположения объектов.

В разделе "Принятые способы молниезащиты объектов" излагаются выбранные способы защиты зданий и сооружений от непосредственного контакта с каналом молнии, вторичных проявлений молнии и заносов высоких потенциалов через наземные и подземные металлические коммуникации.

Объекты, построенные (проектируемые) по одному и тому же типовому или повторно применяемому проекту, имеющие единые строительные характеристики и геометрические размеры и одинаковое устройство молниезащиты, могут иметь одну общую схему и расчет зон защиты молниеотводов. Перечень этих защищаемых объектов приводится на схеме зоны защиты одного из сооружений.

При проверке надежности защиты с использованием программного обеспечения приводятся данные компьютерных расчетов в виде сводки проектных вариантов и формируется заключение об их эффективности.

При разработке технической документации предлагается максимально использовать типовые конструкции молниеотводов и заземлителей и типовые рабочие чертежи по молниезащите. При невозможности применения типовых конструкций устройств молниезащиты могут разрабатываться рабочие чертежи отдельных элементов: фундаментов, опор, молниеприемников, токоотводов, заземлителей.

Для уменьшения объема технической документации и удешевления строительства рекомендуется совмещать проекты молниезащиты с рабочими чертежами на общестроительные работы и работы по монтажу сантехнического и электротехнического оборудования с целью использования для молниезащиты сантехнических коммуникаций и заземлителей электротехнических устройств.

2. Порядок приемки устройств молниезащиты в эксплуатацию

Молниезащитные устройства объектов, законченных строительством (реконструкцией), принимаются в эксплуатацию рабочей комиссией и передаются в эксплуатацию заказчику до начала монтажа технологического оборудования, завоза и загрузки в здания и сооружения оборудования и ценного имущества.

Приемка молниезащитных устройств на действующих объектах осуществляется рабочей комиссией.

Состав рабочей комиссии определяется заказчиком. В состав рабочей комиссии обычно включаются представители:

    ответственного за электрохозяйство;
    подрядной организации;
    инспекции противопожарной охраны.

Рабочей комиссии предъявляются следующие документы:

    утвержденные проекты устройства молниезащиты;
    акты на скрытые работы (по устройству и монтажу заземлителей и токоотводов, недоступных для осмотра);
    акты испытаний устройств молниезащиты и защиты от вторичных проявлений молнии и заноса высоких потенциалов через наземные и подземные металлические коммуникации (данные о сопротивлении всех заземлителей, результаты осмотра и проверки работ по монтажу молниеприемников, токоотводов, заземлителей, элементов их крепления, надежности электрических соединений между токоведущими элементами и др.).

Рабочая комиссия производит полную проверку и осмотр выполненных строительно-монтажных работ по монтажу молниезащитных устройств.

Приемка молниезащитных устройств вновь строящихся объектов оформляется актами приемки оборудования для устройств молниезащиты. Ввод молниезащитных устройств в эксплуатацию оформляется, как правило, актами-допусками соответствующих органов государственного контроля и надзора.

После приемки в эксплуатацию устройств молниезащиты составляются паспорта молниезащитных устройств и паспорта заземлителей устройств молниезащиты, которые хранятся у ответственного за электрохозяйство.

Акты, утвержденные руководителем организации, вместе с представленными актами на скрытые работы и протоколы измерений включаются в паспорт молниезащитных устройств.

3. Эксплуатация устройств молниезащиты

Устройства молниезащиты зданий, сооружений и наружных установок объектов эксплуатируются в соответствии с Правилами технической эксплуатации электроустановок потребителей и указаниями данной Инструкции. Задачей эксплуатации устройств молниезащиты объектов является поддержание их в состоянии необходимой исправности и надежности.

Для обеспечения постоянной надежности работы устройств молниезащиты ежегодно перед началом грозового сезона производится проверка и осмотр всех устройств молниезащиты.

Проверки проводятся также после установки системы молниезащиты, после внесения каких-либо изменений в систему молниезащиты, после любых повреждений защищаемого объекта. Каждая проверка проводится в соответствии с рабочей программой.

Для проведения проверки состояния МЗС указывается причина проверки и организуются:

    комиссия по проведению проверки МЗС с указанием функциональных обязанностей членов комиссии по обследованию молниезащиты;
    рабочая группа по проведению необходимых измерений;
    сроки проведения проверки.

Во время осмотра и проверки устройств молниезащиты рекомендуется:

  • проверить визуальным осмотром (с помощью бинокля) целостность молниеприемников и токоотводов, надежность их соединения и крепления к мачтам;
  • выявить элементы устройств молниезащиты, требующие замены или ремонта вследствие нарушения их механической прочности;
  • определить степень разрушения коррозией отдельных элементов устройств молниезащиты, принять меры по антикоррозионной защите и усилению элементов, поврежденных коррозией;
  • проверить надежность электрических соединений между токоведущими частями всех элементов устройств молниезащиты;
  • проверить соответствие устройств молниезащиты назначению объектов и в случае наличия строительных или технологических изменений за предшествующий период наметить мероприятия по модернизации и реконструкции молниезащиты в соответствии с требованиями настоящей Инструкции;
  • уточнить исполнительную схему устройств молниезащиты и определить пути растекания тока молнии по ее элементам при разряде молнии методом имитации разряда молнии в молниеприемник с помощью специализированного измерительного комплекса, подключенного между молниеприемником и удаленным токовым электродом;
  • измерить значение сопротивления растеканию импульсного тока методом "амперметра-вольтметра" с помощью специализированного измерительного комплекса;
  • измерить значения импульсных перенапряжений в сетях электроснабжения при ударе молнии, распределения потенциалов по металлоконструкциям и системе заземления здания методом имитации удара молнии в молниеприемник с помощью специализированного измерительного комплекса;
  • измерение сопротивления проводников присоединения к земле и выравнивания потенциалов (металлосвязь) (2p);
  • измерение сопротивления заземляющих устройств по трёхполюсной схеме (3p);
  • измерение сопротивления заземляющих устройств по четырехполюсной схеме (4p);
  • измерение сопротивления многократных заземляющих устройств без разрыва цепи заземлителей (с применением токоизмерительных клещей);
  • измерение сопротивления заземляющих устройств методом двух клещей;
  • измерение сопротивления молниезащит (громоотводов) по четырехполюсной схеме импульсным методом;
  • измерение переменного тока (ток утечки);
  • измерение удельного сопротивления грунта методом Веннера с возможностью выбора расстояния между измерительными электродами;
  • высокая помехоустойчивость;
  • сохранение результатов измерений в память;
  • подключение измерителя к компьютеру (USB);
  • совместимость с программой СОНЭЛ Протоколы;
  • измерить значение электромагнитных полей в окрестности расположения устройства молниезащиты методом имитации удара молнии в молниеприемник с помощью специальных антенн;
  • проверить наличие необходимой документации на устройства молниезащиты.

Периодическому контролю со вскрытием в течение шести лет (для объектов I категории) подвергаются все искусственные заземлители, токоотводы и места их присоединений; при этом ежегодно производится проверка до 20 % их общего количества. Пораженные коррозией заземлители и токоотводы при уменьшении их площади поперечного сечения более чем на 25 % должны быть заменены новыми.

Внеочередные осмотры устройств молниезащиты следует производить после стихийных бедствий (ураганный ветер, наводнение, землетрясение, пожар) и гроз чрезвычайной интенсивности.

Внеочередные замеры сопротивления заземления устройств молниезащиты следует производить после выполнения ремонтных работ как на устройствах молниезащиты, так и на самих защищаемых объектах и вблизи них.

Результаты проверок оформляются актами, заносятся в паспорта и журнал учета состояния устройств молниезащиты.

На основании полученных данных составляется план ремонта и устранения дефектов устройств молниезащиты, обнаруженных во время осмотров и проверок.

Земляные работы у защищаемых зданий и сооружений объектов, устройств молниезащиты, а также вблизи них производятся, как правило, с разрешения эксплуатирующей организации, которая выделяет ответственных лиц, наблюдающих за сохранностью устройств молниезащиты.

Во время грозы работы на устройствах молниезащиты и вблизи них не производятся.

Действующий

Для зданий и сооружений, более 70% общей площади которых составляют помещения, не подлежащие молниезащите согласно , а остальную часть здания составляют помещения I, II или III категории молниезащиты, должна быть предусмотрена только защита от заноса высоких потенциалов по коммуникациям, вводимым в помещения, подлежащие молниезащите: по I категории - согласно , ; по II и III категориям - путем присоединения коммуникаций к заземляющему устройству электроустановок, соответствующему указаниям , или к арматуре железобетонного фундамента здания (с учетом требований ). Такое же присоединение должно быть предусмотрено для внутренних коммуникаций (не вводимых извне).

1.6. В целях защиты зданий и сооружений любой категории от прямых ударов молнии следует максимально использовать в качестве естественных молниетводов существующие высокие сооружения (дымовые трубы, водонапорные башни, прожекторные мачты, воздушные линии электропередачи и т.п.), а также других близрасположенных сооружений.

Если здание или сооружение частично вписывается в зону защиты естественных молниеотводов или соседних объектов, защита от прямых ударов молнии должна предусматриваться только для остальной, незащищенной его части. Если в ходе эксплуатации здания или сооружения реконструкция или демонтаж соседних объектов приведет к увеличению этой незащищенной части, соответствующие изменения защиты от прямых ударов молнии должны быть выполнены до начала ближайшего грозового сезона; если демонтаж или реконструкция соседних объектов проводятся в течение грозового сезона, на это время должны быть предусмотрены временные мероприятия, обеспечивающие защиту от прямых ударов молнии незащищенной части здания или сооружения.

1.8. Железобетонные фундаменты зданий, сооружений, наружных установок, опор молниеотводов следует, как правило, использовать в качестве заземлителей молниезащиты при условии обеспечения непрерывной электрической связи по их арматуре и присоединения ее к закладным деталям с помощью сварки.

Битумные и битумно-латексные покрытия не являются препятствием для такого использования фундаментов. В средне- и сильноагрессивных грунтах, где защита железобетона от коррозии выполняется эпоксидными и другими полимерными покрытиями, а также при влажности грунта менее 3% использовать железобетонные фундаменты в качестве заземлителей не допускается.

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ИНСТРУКЦИЯ
ПО УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ

РД 34.21.122-87

Согласована
Госстроем СССР
Письмо № АЧ-3945-8
от 30 июля 1987 г.

Разработчик Государственный научно-исследовательский энергетический институт им. Г.М. Кржижановского

Инструкция по устройству молниезащиты зданий и сооружений. РД 34.21.122-87

Инструкция устанавливает комплекс мероприятий и устройств для обеспечения безопасности людей (сельскохозяйственных животных), предохранения зданий, сооружений, оборудования и материалов от взрывов, пожаров, разрушений при воздействии молнии. Инструкция обязательна для всех министерств и ведомств.

Предназначена для специалистов, проектирующих здания и сооружения.

ПРЕДИСЛОВИЕ

Требования настоящей Инструкции обязательны для выполнения всеми министерствами и ведомствами.

Инструкция устанавливает необходимый комплекс мероприятий и устройств, предназначенных для обеспечения безопасности людей (сельскохозяйственных животных), предохранения зданий, сооружений, оборудования и материалов от взрывов, пожаров и разрушений, возможных при воздействиях молнии.

Инструкция должна соблюдаться при разработке проектов зданий и сооружений.

Инструкция не распространяется на проектирование и устройство молниезащиты линий электропередачи, электрической части электростанций и подстанций, контактных сетей, радио- и телевизионных антенн, телеграфных, телефонных и радиотрансляционных линий, а также зданий и сооружений, эксплуатация которых связана с применением, производством или хранением пороха и взрывчатых веществ.

Настоящая Инструкция регламентирует мероприятия по молниезащите, выполняемые при строительстве, и не исключает использования дополнительных средств молниезащиты внутри здания и сооружения при проведении реконструкции или установке дополнительного технологического или электрического оборудования.

При разработке проектов зданий и сооружений помимо требований Инструкции должны быть учтены требования к выполнению молниезащиты других действующих норм, правил, инструкций, государственных стандартов.

С введением в действие настоящей Инструкции утрачивает силу "Инструкция по проектированию и устройству молниезащиты зданий и сооружений" СН 305-77.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. В соответствии с назначением зданий и сооружений необходимость выполнения молниезащиты и ее категория, а при использовании стержневых и тросовых молниеотводов - тип зоны защиты определяются по в зависимости от среднегодовой продолжительности гроз в месте нахождения здания или сооружения, а также от ожидаемого количества поражений его молнией в год. Устройство молниезащиты обязательно при одновременном выполнении условий, записанных в графах 3 и 4 .

Оценка среднегодовой продолжительности гроз и ожидаемого количества поражений молнией зданий или сооружений производится согласно ; построение зон защиты различных типов - согласно .

Здания и сооружения

Местоположение

Тип зоны защиты при использовании стержневых и тросовых молниеотводов

Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов В-I и В-II

На всей территории СССР

То же классов В-Iа, В-Iб, В-IIа

При ожидаемом количестве поражений молнией в год здания или сооружения N>1 - зона А; при N£ 1 - зона Б

Наружные установки, создающие согласно ПУЭ зону класса В-Iг

На всей территории СССР

Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа

Для зданий и сооружений I и II степеней огнестойкости при 0,1 2- зона А

Расположенные в сельской местности небольшие строения III - V степеней огнестойкости, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа

В местностях со средней продолжительностью гроз 20 ч в год и более при N<0,02

Наружные установки и открытые склады, создающие согласно ПУЭ зону классов П-III

В местностях со средней продолжительностью гроз 20 ч в год и более

При 0,12 - зона А

Здания и сооружения III, IIIa, IIIб, IV, V степеней огнестойкости, в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов

При 0,12 - зона А

Здания и сооружения из легких металлических конструкций со сгораемым утеплителем (IVa степени огнестойкости), в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов

В местностях со средней продолжительностью гроз 10 ч в год и более

При 0,022 - зона А

Небольшие строения III-V степеней огнестойкости, расположенные в сельской местности, в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов

В местностях со средней продолжительностью гроз 20 ч в год и более для III, IIIa, IIIб, IV, V степеней огнестойкости при N<0,1, для IVa степени огнестойкости при N<0,02

Здания вычислительных центров, в том числе расположенные в городской застройке

В местностях со средней продолжительностью гроз 20 ч в год и более

Животноводческие и птицеводческие здания и сооружения III-V степеней огнестойкости: для крупного рогатого скота и свиней на 100 голов и более, для овец на 500 голов и более, для птицы на 1000 голов и более, для лошадей на 40 голов и более

В местностях со средней продолжительностью гроз 40 ч в год и более

Дымовые и прочие трубы предприятий и котельных, башни и вышки всех назначений высотой 15 м и более

В местностях со средней продолжительностью гроз 10 ч в год и более

Жилые и общественные здания, высота которых более чем на 25 м превышает среднюю высоту окружающих зданий в радиусе 400 м, а также отдельно стоящие здания высотой более 30 м, удаленные от других зданий более чем на 400 м

В местностях со средней продолжительностью гроз 20 ч в год и более

Отдельно стоящие жилые и общественные здания в сельской местности высотой более 30 м

Общественные здания III-V степеней огнестойкости следующего назначения: детские дошкольные учреждения, школы и школы-интернаты, стационары лечебных учреждений, спальные корпуса и столовые учреждений здравоохранения и отдыха, культурно-просветительные и зрелищные учреждения, административные здания, вокзалы, гостиницы, мотели и кемпинги

Открытые зрелищные учреждения (зрительные залы открытых кинотеатров, трибуны открытых стадионов и т.п.)

Здания и сооружения, являющиеся памятниками истории, архитектуры и культуры (скульптуры, обелиски и т.п.)

1.4. Для зданий и сооружений с помещениями, требующими устройства молниезащиты II и III категорий, молниезащиту всего здания или сооружения следует выполнять по II категории.

Если площадь помещений II категории молниезащиты составляет менее 30% площади всех помещений здания (на всех этажах), молниезащиту всего здания допускается выполнять по III категории. При этом на вводе в помещения II категории должна быть предусмотрена защита от заноса высокого потенциала по подземным и наземным (надземным) коммуникациям, выполняемая согласно и .

1.5. Для зданий и сооружений, не менее 30% общей площади которых приходится на помещения, требующие устройства молниезащиты по I, II или III категории, молниезащита этой части зданий и сооружений должна быть выполнена в соответствии с .

Для зданий и сооружений, более 70% общей площади которых составляют помещения, не подлежащие молниезащите согласно табл. 1, а остальную часть здания составляют помещения I, II или III категории молниезащиты, должна быть предусмотрена только защита от заноса высоких потенциалов по коммуникациям, вводимым в помещения, подлежащие молниезащите: по I категории - согласно пп. , ; по II и III категориям - путем присоединения коммуникаций к заземляющему устройству электроустановок, соответствующему указаниям , или к арматуре железобетонного фундамента здания (с учетом требований ). Такое же присоединение должно быть предусмотрено для внутренних коммуникаций (не вводимых извне).

В противном случае должна быть обеспечена прокладка внутри здания в земле на глубине не менее 0,5 м протяженных горизонтальных электродов сечением не менее 100 мм. Электроды следует прокладывать не реже чем через 60 м по ширине здания и присоединять по его торцам с двух сторон к наружному контуру заземления.

1.12. Устройства и мероприятия по молниезащите, отвечающие требованиям настоящих норм, должны быть заложены в проект и график строительства или реконструкции здания или сооружения таким образом, чтобы выполнение молниезащиты происходило одновременно с основными строительно-монтажными работами.

Указанные молниеотводы должны обеспечивать зону защиты типа А в соответствии с требованиями . При этом обеспечивается удаление элементов молниеотводов от защищаемого объекта и подземных металлических коммуникаций в соответствии с , , .

При этом для отдельно стоящих молниеотводов приемлемыми являются следующие конструкции заземлителей ():

Заземлитель

Эскиз

Размеры, м

Железобетонный подножник

a ³ 1,8

b ³ 0,4

l ³ 2,2

Железобетонная свая

d = 0,25-0,4

l ³ 5

Стальной двухстержневой:

полоса размером 40 ´ 4 мм

стержни диаметром d = 10-20 мм

t ³ 0,5

l = 3-5

c = 3-5

Стальной трехстержневой:

полоса размером 40 ´ 4 мм

стержни диаметром d = 10-20 мм

t ³ 0,5

l = 3-5

c = 5-6

Форма токоотвода и заземлителя

Сечение (диаметр) токоотвода и заземлителя, проложенных

снаружи здания на воздухе

в земле

Круглые токоотводы и перемычки диаметром, мм

Круглые вертикальные электроды диаметром, мм

Круглые горизонтальные* электроды диаметром, мм

Прямоугольные электроды:

сечением, мм

толщиной, мм

* Только для выравнивания потенциалов внутри зданий и для прокладки наружных контуров на дне котлована по периметру здания.

б) внутри зданий и сооружений между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстояние менее 10 см через каждые 20 м следует приваривать или припаивать перемычки из стальной проволоки диаметром не менее 5 мм или стальной ленты сечением не менее 24 мм 2 , для кабелей с металлическими оболочками или броней перемычки должны выполняться из гибкого медного проводника в соответствии с указаниями СНиП 3.05.06-85 ;

в) в соединениях элементов трубопроводов или других протяженных металлических предметов должны быть обеспечены переходные сопротивления не более 0,03 Ом на каждый контакт. При невозможности обеспечения контакта с указанным переходным сопротивлением с помощью болтовых соединений необходимо устройство стальных перемычек, размеры которых указаны в подпункте "б".

В месте перехода воздушной линии электропередачи в кабель металлические броня и оболочка кабеля, а также штыри или крючья изоляторов воздушной линии должны быть присоединены к заземлителю, указанному в . К такому же заземлителю должны быть присоединены штыри или крючья изоляторов на опоре воздушной линии электропередачи, ближайшей к месту перехода в кабель.

Кроме того, в месте перехода воздушной линии электропередачи в кабель между каждой жилой кабеля и заземленными элементами должны быть обеспечены закрытые воздушные искровые промежутки длиной 2-3 мм или установлен вентильный разрядник низкого напряжения, например РВН-0,5.

Защита от заноса высоких потенциалов по воздушным линиям электропередачи напряжением выше 1 кВ, вводимым в подстанции, размещенные в защищаемом здании (внутрицеховые или пристроенные), должна выполняться в соответствии с ПУЭ.

МОЛНИЕЗАЩИТА II КАТЕГОРИИ

Молниеприемная сетка должна быть выполнена из стальной проволоки диаметром не менее 6 мм и уложена на кровлю сверху или под несгораемые или трудносгораемые утеплитель или гидроизоляцию. Шаг ячеек сетки должен быть не более 6 ´ 6 м. Узлы сетки должны быть соединены сваркой. Выступающие над крышей металлические элементы (трубы, шахты, вентиляционные устройства) должны быть присоединены к молниеприемной сетке, а выступающие неметаллические элементы - оборудованы дополнительными молниеприемниками, также присоединенными к молниеприемной сетке.

Установка молниеприемников или наложение молниеприемной сетки не требуется для зданий и сооружений с металлическими фермами при условии, что в их кровлях используются несгораемые или трудносгораемые утеплители и гидроизоляция.

На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками, присоединенными к металлу кровли, в. также соблюдены требования .

Токоотводы от металлической кровли или молниеприемной сетки должны быть проложены к заземлителям не реже чем через 25 м по периметру здания.

при наличии молниеприемной сетки или металлической кровли по периметру здания или сооружения прокладывается наружный контур следующей конструкции:

в грунтах с эквивалентным удельным сопротивлением r £ 500 Ом × м при площади здания более 250 м 2 выполняется контур из горизонтальных электродов, уложенных в земле на глубине не менее 0,5 м, а при площади здания менее 250 м 2 к этому контуру в местах присоединения токоотводов приваривается по одному вертикальному или горизонтальному лучевому электроду длиной 2-3 м;

в грунтах с удельным сопротивлением 500 < r £ 1000 Ом × м при площади здания более 900 м 2 достаточно выполнить контур только из горизонтальных электродов, а при площади здания менее 900 м 2 к этому контуру в местах присоединения токоотводов приваривается не менее двух вертикальных или горизонтальных лучевых электродов длиной 2-3 м на расстоянии 3-5 м один от другого.

Минимально допустимые сечения (диаметры) электродов искусственных заземлителей определяются по .

В зданиях большой площади наружный контур заземления может также использоваться для выравнивания потенциала внутри здания в соответствии с требованиями .

Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановок в соответствии с указаниями .

б) внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их сближения на расстояние менее 10 см через каждые 30 м должны быть выполнены перемычки в соответствии с указаниями п. );

в) во фланцевых соединениях трубопроводов внутри здания следует обеспечить нормальную затяжку не менее четырех болтов на каждый фланец.

2.21. Для защиты наружных установок от вторичных проявлений молнии металлические корпуса установленных на них аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

На резервуарах с плавающими крышами или понтонами необходимо устанавливать не менее двух гибких стальных перемычек между плавающими крышами или понтонами и металлическим корпусом резервуара или токоотводами установленных на резервуаре молниеотводов.

МОЛНИЕЗАЩИТА III КАТЕГОРИИ

При этом в случае использования молниеприемной сетки шаг ее ячеек должен быть не более 12 ´ 12м.

В зданиях большой площади (шириной более 100 м) наружный контур заземления может также использоваться для выравнивания потенциалов внутри здания в соответствии с требованиями .

Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки, указанным в гл. 1.7 ПУЭ.

2.27. При защите строений для крупного рогатого скота и конюшен отдельно стоящими молниеотводами их опоры и заземлители следует располагать не ближе чем в 5м от входа в строения.

При установке молниеприемников или укладке сетки на защищаемом стрости в качестве заземлителей следует использовать железобетонный фундамент (см. ) или наружный контур, проложенный по периметру строения под асфальтовой или бетонной отмосткой в соответствии с указаниями .

К заземлителям защиты от прямых ударов молнии должны быть присоединены находящиеся внутри строения металлические конструкции, оборудование и трубопроводы, а также устройства выравнивания электрических потенциалов.

2.28. Защита от прямых ударов молнии металлических скульптур и обелисков, указанных в п. 17 , обеспечивается присоединением их к заземлителю любой конструкции, приведенной в .

При наличии часто посещаемых площадок вблизи таких сооружений большой высоты должно быть выполнено выравнивание потенциала в соответствии с .

2.29. Молниезащита наружных установок, содержащих горючие жидкости с температурой вспышки паров выше 61 ° С и соответствующих п. 6 , должна быть выполнена следующим образом:

а) корпуса установок из железобетона, а также металлические корпуса установок и резервуаров при толщине крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом сооружении или отдельно стоящими;

б) металлические корпуса установок и резервуаров при толщине крыши 4 мм и более следует присоединять к заземлителю. Конструкции заземлителей должны отвечать требованиям .

3.6. При установке молниеотводов на защищаемом объекте и невозможности использования в качестве токоотводов металлических конструкций здания (см. ) токоотводы должны быть проложены к заземлителям по наружным стенам здания кратчайшими путями.

Допустимые размеры одиночных конструкций железобетонных фундаментов, используемых в качестве заземлителей, приведены в .

ПРИЛОЖЕНИЕ 1

ОСНОВНЫЕ ТЕРМИНЫ

1. Прямой удар молнии (поражение молнией) - непосредственный контакт канала молнии с зданием или сооружением, сопровождающийся протеканием через него тока молнии.

2. Вторичное проявление молнии - наведение потенциалов на металлических элементах конструкции, оборудования, в незамкнутых металлических контурах, вызванное близкими разрядами молнии и создающее опасность искрения внутри защищаемого объекта.

3. Занос высокого потенциала - перенесение в защищаемое здание или сооружение по протяженным металлическим коммуникациям (подземным, наземным и надземным трубопроводам, кабелям и т.п.) электрических потенциалов, возникающих при прямых и близких ударах молнии и создающих опасность искрения внутри защищаемого объекта.

4. Молниеотвод - устройство, воспринимающее удар молнии и отводящее ее ток в землю.

В общем случае молниеотвод состоит из опоры; молниеприемника, непосредственно воспринимающего удар молнии; токоотвода, по которому ток молнии передается в землю; заземлителя, обеспечивающего растекание тока молнии в земле.

В некоторых случаях функции опоры, молниеприемника и токоотвода совмещаются, например при использовании в качестве молниеотвода металлических труб или ферм.

5. Зона защиты молниеотвода - пространство, внутри которого здание или сооружение защищено от прямых ударов молнии с надежностью не ниже определенного значения. Наименьшей и постоянной надежностью обладает поверхность зоны защиты; в глубине зоны защиты надежность выше, чем на ее поверхности.

Зона защиты типа А обладает надежностью 99,5% и выше, а тина Б - 95 % и выше.

6. Конструктивно молниеотводы разделяются на следующие виды:

стержневые - с вертикальным расположением молниеприемника;

тросовые (протяженные) - с горизонтальным расположением молниеприемника, закрепленного на двух заземленных опорах;

сетки - многократные горизонтальные молниеприемники, пересекающиеся под прямым углом и укладываемые на защищаемого объекта.

7. Отдельно стоящие молниеотводы - это те, опоры которых установлены на земле на некотором удалении от защищаемого объекта.

8. Одиночный молниеотвод - это единичная конструкция стержневого или тросового молниеотвода.

9. Двойной (многократный) молниеотвод - это два (или более) стержневых или тросовых молниеотвода, образующих общую зону защиты.

10. Заземлитель молниезащиты - один или несколько заглубленных в землю проводников, предназначенных для отвода в землю токов молнии или ограничения перенапряжений, возникающих на металлических корпусах, оборудовании, коммуникациях при близких разрядах молнии. Заземлители делятся на естественные и искусственные.

11. Естественные заземлители - заглубленные в землю металлические и железобетонные конструкции зданий и сооружений.

12. Искусственные заземлители - специально проложенные в земле контуры из полосовой или круглой стали; сосредоточенные конструкции, состоящие из вертикальных и горизонтальных проводников.

ПРИЛОЖЕНИЕ 2

ХАРАКТЕРИСТИКИ ИНТЕНСИВНОСТИ ГРОЗОВОЙ ДЕЯТЕЛЬНОСТИ И ГРОЗОПОРАЖАЕМОСТИ ЗДАНИЙ И СООРУЖЕНИЙ

Среднегодовая продолжительность гроз в часах в произвольном пункте на территории СССР определяется по карте (), или по утвержденным для некоторых областей СССР региональным картам продолжительности гроз, или по средним многолетним (порядка 10 лет) данным метеостанции, ближайшей от места нахождения здания или сооружения.

Подсчет ожидаемого количества N поражений молнией в год производится по формулам:

для сосредоточенных зданий и сооружений (дымовые трубы, вышки, башни)

;

для зданий и сооружений прямоугольной формы

где h - наибольшая высота здания или сооружения, м; S, L - соответственно ширина и длина здания или сооружения, м; n - среднегодовое число ударов молнии в 1 км земной поверхности (удельная плотность, ударов молнии в землю) в месте нахождения здания или сооружения.

Для зданий и сооружений сложной конфигурации в качестве S и L рассматриваются ширина и длина наименьшего прямоугольника, в который может быть вписано здание или сооружение в плане.

Для произвольного пункта на территории СССР удельная плотность ударов молнии в землю n определяется исходя из среднегодовой продолжительности гроз в часах следующим образом:


Основным условием защищенности одного или нескольких объектов высотой h x с надежностью, соответствующей надежности зоны А и зоны Б, является выполнение неравенства r cx > 0 для всех попарно взятых молниеотводов. В противном случае построение зон защиты должно быть выполнено для одиночных или двойных стержневых молниеотводов в зависимости от выполнения условий п. 2 настоящего приложения.

4. Одиночный тросовый молниеотвод.

Зона защиты одиночного тросового молниеотвода высотой h £ 150 м приведена на , где h - высота троса в середине пролета. С учетом стрелы провеса троса сечением 35-50 мм 2 при известной высоте опор h оп и длине пролета а высота троса (в метрах) определяется:

h = h оп - 2 при а< 120 м;

h = h оп - 3 при 120 < а< 15Ом.

Зоны защиты одиночного тросового молниеотвода имеют следующие габаритные размеры.

Зона А:

Зона Б:

Для зоны типа Б высота одиночного тросового молниеотвода при известных значениях h x и r x определяется по формуле

5. Двойной тросовый молниеотвод.

5.1. Зона защиты двойного тросового молниеотвода высотой h £ 150 м приведена на . Размеры r 0 , h 0 , r x для зон защиты А и Б определяются по соответствующим формулам п. 4 настоящего приложения. Остальные размеры зон определяются следующим образом.

Зона А:

при L £ h

при h < L £ 2h

;

при 2h < L £ 4h

;

При расстоянии между тросовыми молниеотводами L > 4h для построения зоны А молниеотводы следует рассматривать как одиночные.

Зона Б:

при L £ h

при h < L £ 6h

;

;

При расстоянии между тросовыми молниеотводами L > 6h для построения зоны Б молниеотводы следует рассматривать как одиночные. При известных значениях h c и L (при r cx = 0) высота тросового молниеотвода для зоны Б определяется по формуле

h = (h c + 0,12L)/1,06.

6. СРЕДСТВА И СПОСОБЫ МОЛНИЕЗАЩИТЫ

Требования к выполнению всего комплекса мероприятий по молниезащите объектов I, II и III категорий и конструкциям молниеотводов изложены в § 2 и 3 РД 34.21.122-87. Настоящий раздел пособия поясняет основные положения этих требований.

Молниезащита представляет собой комплекс мероприятий, направленных на предотвращение прямого удара молнии в объект или на устранение опасных последствий, связанных с прямым ударом; к этому комплексу относятся также средства защиты, предохраняющие объект от вторичных воздействий молнии и заноса высокого потенциала.

Средством защиты от прямых ударов молнии служит молниеотвод - устройство, рассчитанное на непосредственный контакт с каналом молнии и отводящее ее ток в землю.

Молниеотводы разделяются на отдельно стоящие, обеспечивающие растекание тока молнии минуя объект, и установленные на самом объекте. При этом растекание тока происходит по контролируемым путям так, что обеспечивается низкая вероятность поражения людей (животных), взрыва или пожара.

Установка отдельно стоящих молниеотводов исключает возможность термического воздействия на объект при поражении молниеотвода; для объектов с постоянной взрывоопасностью, отнесенных к I категории, принят этот способ защиты, обеспечивающий минимальное количество опасных воздействий при грозе. Для объектов II и III категорий, характеризующихся меньшим риском взрыва или пожара, в равной мере допустимо использование отдельно стоящих молниеотводов и установленных на защищаемом объекте.

Молниеотвод состоит из следующих элементов: молниеприемника, опоры, токоотвода и заземлителя. Однако на практике они могут образовывать единую конструкцию, например металлическая мачта или ферма здания представляет собой молниеприемник, опору и токоотвод одновременно.

По типу молниеприемника молниеотводы разделяются на стержневые (вертикальные), тросовые (горизонтальные протяженные) и сетки, состоящие из продольных и поперечных горизонтальных электродов, соединенных в местах пересечений. Стержневые и тросовые молниеотводы могут быть как отдельно стоящие, так и установленные на объекте; молниеприемные сетки укладываются на неметаллическую кровлю защищаемых зданий и сооружений. Однако укладка сеток рациональна лишь на зданиях с горизонтальными крышами, где равновероятно поражение молнией любого их участка. При больших уклонах крыши наиболее вероятны удары молнии вблизи ее конька, и в этих случаях укладка сетки по всей поверхности кровли приведет к неоправданным затратам металла; более экономична установка стержневых или тросовых молниеприемников, в зону защиты которых входит весь объект. По этой причине в укладка молниеприемной сетки допускается на неметаллических кровлях с уклоном не более 1:8. Иногда укладка сетки поверх кровли неудобна из-за ее конструктивных элементов (например, волнистой поверхности покрытия). В этих случаях допускается укладывать сетку под утеплителем или гидроизоляцией, при условии что они выполнены из несгораемых или трудносгораемых материалов и их пробой при разряде молнии не приведет к загоранию кровли ().

При выборе средств защиты от прямых ударов молнии, типов молниеотводов необходимо учитывать экономические соображения, технологические и конструктивные особенности объектов. Во всех возможных случаях близрасположенные высокие сооружения необходимо использовать как отдельно стоящие молниеотводы, а конструктивные элементы зданий н сооружений, например металлическую кровлю, фермы, металлические и железобетонные колонны и фундаменты, - как молниеприемники, токоотводы и заземлители. Эти положения учтены в , , , , . Защита от термических воздействий прямого удара молнии осуществляется путем надлежащего выбора сечений молниеприемников и токоотводов (), толщины корпусов наружных установок (), расплавление и проплавление которых не может произойти при указанных выше параметрах тока молнии, переносимого заряда и температуры в канале.

Защита от механических разрушений различных строительных конструкций при прямых ударах молнии осуществляется: бетона - армированием и обеспечением надежных контактов в местах соединения с арматурой (); неметаллических выступающих частей и покрытий зданий - применением материалов, не содержащих влаги или газогенерирующих веществ.

Защита от перекрытий на защищаемый объект при поражении отдельно стоящих молниеотводов достигается надлежащим выбором, конструкций заземлителей и изоляционных расстояний между молниеотводом и объектом ( - ). Защита от перекрытий внутри здания при протекании по нему тока молнии обеспечивается надлежащим выбором количества токоотводов, проложенных к заземлителям кратчайшими путями ().

Защита от напряжении прикосновения и шага ( , ) обеспечивается путем прокладки токоотводов в малодоступных для людей местах и равномерного размещения заземлителей по территории объекта.

Защита от вторичных воздействий молнии обеспечивается следующими мероприятиями. От электростатической индукции и заноса высокого потенциала - ограничением перенапряжений, наведенных на оборудовании, металлических конструкциях и вводимых коммуникациях, путем их присоединения к заземлителям определенных конструкций; от электромагнитной индукции - ограничением площади незамкнутых контуров внутри зданий путем наложения перемычек в местах сближения металлических коммуникаций. Для исключения искрения в местах соединений протяженных металлических коммуникаций обеспечиваются низкие переходные сопротивления - не более 0,03 Ом, например, во фланцевых соединениях трубопроводов этому требованию соответствует затяжка шести болтов на каждый фланец ().

7. ЗАЩИТНОЕ ДЕЙСТВИЕ И ЗОНЫ ЗАЩИТЫ МОЛНИЕОТВОДОВ

Ниже поясняется подход к определению зон защиты молниеотводов, построение которых осуществляется по формулам РД 34.21.122-87.

Защитное действие молниеотвода основано на "свойстве молнии с большей вероятностью поражать более высокие и хорошо заземленные предметы по сравнению с расположенными рядом объектами меньшей высоты. Поэтому на молниеотвод, возвышающийся над защищаемым объектом, возлагается функция перехвата молний, которые в отсутствие молниеотвода поразили бы объект. Количественно защитное действие молниеотвода определяется через вероятность прорыва - отношение числа ударов молнии в защищенный объект (числа прорывов) к общему числу ударов в молниеотвод и объект.

Существует несколько способов оценки вероятности прорыва, основанных на разных физических представлениях о процессах поражения молнией. В РД 34.21.122-87 использованы результаты расчетов по вероятностной методике, связывающей вероятность поражения молниеотвода и объекта с разбросом траекторий нисходящей молнии без учета вариаций ее токов.

Согласно принятой расчетной модели невозможно создать идеальную защиту от прямых ударов молнии, полностью исключающую прорывы на защищаемый объект. Однако на практике осуществимо взаимное расположение объекта и молниеотвода, обеспечивающее низкую вероятность прорыва, например 0,1 и 0,01, что соответствует уменьшению числа поражений объекта примерно в 10 и 100 раз по сравнению с незащищенным объектом. Для большинства современных объектов при таких уровнях защиты обеспечивается малое количество прорывов за весь срок их службы.

Выше рассматривалось производственное здание высотой 20 и размерами в плане 100 ´ 100 м, расположенное в местности с продолжительностью гроз 40-60 ч в год; если это здание защищено молниеотводами с вероятностью прорыва 0,1, в него можно ожидать не более одного прорыва за 50 лет. При этом не все прорывы в равной степени опасны для защищаемого объекта, например воспламенения возможны при больших токах или переносимых зарядах, которые встречаются не в каждом разряде молнии. Следовательно, на данный объект можно ожидать одно опасное воздействие за срок, заведомо превышающий 50 лет или для большинства промышленных объектов II и III категорий не более одного опасного воздействия за все время их существования. При вероятности прорыва 0,01 в то же здание можно ожидать не более одного прорыва за 500 лет - период, намного превышающий срок службы любого промышленного объекта. Такой высокий уровень защиты оправдан только для объектов I категории, представляющих постоянную угрозу взрыва.

Выполняя серию расчетов вероятности прорыва в окрестности молниеотвода, можно построить поверхность, являющуюся геометрическим местом положения вершин защищаемых объектов, для которых вероятность прорыва - постоянное значение. Эта поверхность является внешней границей пространства, называемого зоной защиты молниеотвода; для одиночного стрежневого молниеотвода эта граница - боковая поверхность кругового конуса, для одиночного троса - двускатная плоская поверхность.

Обычно зону защиты обозначают по максимальной вероятности прорыва, соответствующей ее внешней границе, хотя в глубине зоны вероятность прорыва существенно уменьшается.

Расчетный метод позволяет построить для стержневых и тросовых молниеотводов зону защиты с произвольным значением вероятности прорыва, т.е. для любого молниеотвода (одиночного или двойного) можно построить произвольное количество зон защиты. Однако для большинства народнохозяйственных зданий достаточный уровень защиты можно обеспечить, пользуясь двумя зонами, с вероятностью прорыва 0,1 и 0,01.

В терминах теории надежности вероятность прорыва - это параметр, характеризующий отказ молниеотвода как защитного устройства. При таком подходе двум принятым зонам защиты соответствует степень надежности 0,9 и 0,99. Эта оценка надежности справедлива при расположении объекта вблизи границы зоны защиты, например объекта в виде кольца, соосного со стержневым молниеотводом. У реальных же объектов (обычных зданий) на границе зоны защиты, как правило, расположены лишь верхние элементы, а большая часть объекта помещается в глубине зоны. Оценка надежности зоны защиты по ее внешней границе приводит к чрезмерно заниженным значениям. Поэтому, чтобы учесть существующее на практике взаимное расположение молниеотводов и объектов, зонам защиты А и Б приписана в РД 34.21.122-87 ориентировочная степень надежности 0,995 и 0,95 соответственно.

Линейные зависимости между расчетными параметрами зон защиты типа Б позволяют с достаточной для практики точностью оценивать высоты молниеотводов с помощью номограмм, сокращающих объем вычислений. Такие номограммы, построенные в соответствии с формулами и обозначениями РД 34.21.122-87, приведены на для определения высот стержневых С и тросовых Т одиночных и двойных молниеотводов (разработка Гипропрома).

8. ПОДХОД К НОРМИРОВАНИЮ ЗАЗЕМЛИТЕЛЕЙ МОЛНИЕЗАЩИТЫ

Ниже пояснен принятый в РД 34.21.122-87 подход к выбору заземлителей молниезащиты зданий и сооружений.

Одним из эффективных способов ограничения грозовых перенапряжений в цепи молниеотвода, а также на металлических конструкциях и оборудовании объекта является обеспечение низких сопротивлений заземлителей. Поэтому при выборе молниезащиты нормированию подлежит сопротивление заземлителя или другие его характеристики, связанные с сопротивлением.

До недавнего времени для заземлителей молниезащиты нормировалось импульсное сопротивление растеканию токов молнии: его максимально допустимое значение было принято равным 10 Ом для зданий и сооружений I и II категорий и 20 Ом для зданий и сооружений III категории. При этом допускалось увеличение импульсного сопротивления до 40 Ом в грунтах с удельным сопротивлением более 500 Ом × м при одновременном удалении молниеотводов от объектов I категории на расстояние, гарантирующее от пробоя по воздуху и в земле. Для наружных установок максимально допустимое импульсное сопротивление заземлителей было принято равным 50 Ом.

Импульсное сопротивление заземлителя является количественной характеристикой сложных физических процессов при растекании в земле токов молнии. Его значение отличается от сопротивления заземлителя при растекании токов промышленной частоты и зависит от нескольких параметров тока молнии (амплитуды, крутизны, длины фронта), варьирующихся в широких пределах. С увеличением тока молнии импульсное сопротивление заземлителя падает, причем в возможном интервале распределения токов молнии (от единиц до сотен килоампер) его значение может уменьшаться в 2-5 раз.

При проектировании заземлителя нельзя предсказать значения токов молнии, которые будут через него растекаться, а следовательно, невозможно оценить наперед соответствующие значения импульсных сопротивлений. В этих условиях нормирование заземлителей по их импульсному сопротивлению имеет очевидные неудобства. Разумнее выбрать конкретные конструкции заземлителей по следующему условию. Импульсные сопротивления заземлителей во всем возможном диапазоне токов молнии не должны превышать указанных максимально допустимых значений.

Такое нормирование было принято в , , , : для ряда типовых конструкций были подсчитаны импульсные сопротивления при колебаниях токов молнии от 5 до 100 кА и по результатам расчетов проведен отбор заземлителей, удовлетворяющих принятому условию.

В настоящее время распространенными и рекомендуемыми (РД 34.21.122-87, ) конструкциями заземлителей являются железобетонные фундаменты. К ним предъявляется дополнительное требование - исключение механических разрушений бетона при растекании через фундамент токов молнии. Железобетонные конструкции выдерживают большие плотности растекающихся по арматуре токов молнии, что связано с кратковременностью этого растекания. Единичные железобетонные фундаменты (сваи длиной не менее 5 или подножники длиной не менее 2 м) способны без разрушения выдерживать токи молнии до 100 кА, по этому условию в РД 34.21.122-87 заданы допустимые размеры единичных железобетонных заземлителей. Для фундаментов больших размеров с соответственно большей поверхностью арматуры опасная для разрушения бетона плотность тока маловероятна при любых возможных токах молнии.

Нормирование параметров заземлителей по их типовым конструкциям имеет ряд достоинств: оно соответствует принятой в строительной практике унификации железобетонных фундаментов с учетом их повсеместного использования в качестве естественных заземлителей при выборе молниезащиты не требуется выполнять расчеты импульсных сопротивлений заземлителей, что сокращает объем проектных работ .

9. ПРИМЕРЫ ИСПОЛНЕНИЯ МОЛНИЕЗАЩИТЫ РАЗЛИЧНЫХ ОБЪЕКТОВ* ( -)

* Разработаны ВНИПИ Тяжпромэлектропроект, институтом Гипротрубопровод и ГИАП,

Рис. П4.2 . Молниезащита здания I категории отдельно стоящим двойным стержневым молниеотводом (r = 300 Ом× м, S в £ 4 м, S з £ 6 м):

1 - граница зоны защиты; 2 - заземлители-подножники фундамента; 3 - зона защиты на отметке 8,0 м



Рис. П4.3 . Молниезащита здания I категории отдельно стоящим тросовым молниеотводом (r = 300 Ом× м, S в £ 4 м, S з £ 6 м, S в1 ³ 3,5 м):

1 - трос; 2 - граница зоны защиты; 3 - ввод подземного трубопровода; 4 - граница распространения взрывоопасной концентрации; 5 - соединения арматуры, выполняемые сваркой; 6 - железобетонный фундамент; 7 - закладные элементы для присоединения оборудования; 8 - заземляющий проводник из стали 4х40 мм; 9 - заземлители - железобетонные подножники; 10 - граница зоны защиты на отметке 10,5 м

Рис П4.4. Молниезащита здания II категории сеткой, уложенной на кровлю под гидроизоляцию:

1 - молниеприемная сетка; 2 - гидроизоляция здания; 3 - опора здания; 4 - стальная перемычка; 5 -арматура колонны; 6 - заземлители, железобетонные фундаменты; 7 - закладная деталь; 8 - опора эстакады; 9 - технологическая эстакада

Рис. П4.5. Молниезащита здания II категории с металлическими фермами (в качестве токоотводов и заземлителей использована арматура железобетонных колонн и фундаментов):

1 - арматура колонны; 2 - арматура фундамента; 3 - заземлитель; 4 - стальная ферма; 5 - железобетонная колонна; 6 - анкерные болты, привариваемые к арматуре; 7 - закладная деталь

Рис. П4.6. План цеха компрессии азотоводородной смеси (относится к взрывоопасным с зоной класса В-1а):

Условные обозначения: D - стержневой молниеотвод (№ 1-6); -.-.-.- токоотводящая металлическая полоса; О - газоотводные трубы для отвода в атмосферу газов невзрывоопасной концентрации; · - то же взрывоопасной концентрации


Рис. П4.7 . Молниезащита металлического резервуара вместимостью 20 тыс. м 3 со сферической крышей:

1 - дыхательный клапан; 2 - область выброса газов взрывоопасной концентрации; 3 - граница зоны защиты; 4 - зона защиты на высоте h x = 23,7м; 5 - то же на высоте h x =22,76 м



Рис. П4.8. Молниезащита металлического резервуара вместимостью 20 тыс. м 3 со сферической крышей и понтоном:

1 - клапан аварийного выброса газов; 2, 3 - то же, что на ; 4 - понтон; 5 - зона защиты на высоте h х = 23м; 6 - гибкий кабель


Рис. П4.9. Молниезащита сельского дома тросовым молниеотводом, установленным на крыше:

1 - тросовый молниеприемник; 2 - ввод воздушной линии электропередачи (ВЛ) и заземление крюков ВЛ на стене; 3 - токоотвод; 4 - заземлитель



Новое на сайте

>

Самое популярное