Домой Инструмент Микросхемы 1 wire. Монтаж линии датчиков (1-wire)

Микросхемы 1 wire. Монтаж линии датчиков (1-wire)

Однопроводной интерфейс 1-Wire, разработанный в конце 90-х годов фирмой Dallas Semiconductor Corp., регламентирован разработчиками для применения в трех основных сферах-приложениях:

  • приборы в специальных корпусах MicroCAN для решения проблем идентификации, переноса или преобразования информации (технология iButton),
  • программирование встроенной памяти интегральных компонентов,
  • системы автоматизации (технология сетей
  • 1-Wire-сетей).

Если первое применение широко известно на мировом рынке, и уже давно пользуется заслуженной популярностью, а второе с успехом обеспечивает возможность легкой перестройки функций полупроводниковых компонентов с малым количеством внешних выводов, производимых фирмой Dallas Semiconductor Corp., то системы автоматизации на базе 1-Wire-шины еще не получили должного признания. Ранее такая ситуация определялась, крайне ограниченным набором компонентов для организации применений в области автоматизации. Однако, в последнее время появляется все больше сообщений и конкретных примеров использования 1-Wire-интерфейса в самых различных областях, все больше разработчиков проявляют интерес к этой технологии, что связанно, прежде всего, со значительным расширением номенклатуры однопроводных компонентов.

Так в чем же особенность этого сетевого стандарта? Ведь в качестве среды для передачи информации по однопроводной линии чаще всего возможно использование обычного телефонного кабеля и, следовательно, скорость обмена в этом случае не велика. Однако, если внимательно проанализировать большинство объектов требующих автоматизации, то более чем для 60% из них предельная скорость обслуживания в 15,4 кБит/сек будет более чем удовлетворительной. А другие преимущества 1-Wire, такие как:

  • простое и оригинальное решение адресуемости абонентов,
  • несложный протокол,
  • простая структура линии связи,
  • малое потребление компонентов,
  • легкое изменение конфигурации сети,
  • значительная протяженность линий связи,
  • исключительная дешевизна всей технологии в целом,

Говорят о необходимости обратить самое пристальное внимание на этот эффективный инструмент для решения задач комплексной автоматизации в самых различных областях деятельности.

Основные принципы

1-Wire-net представляет собой информационную сеть, использующую для осуществления цифровой связи одну линию данных и один возвратный (или земляной ) провод. Таким образом, для реализации среды обмена этой сети могут быть применены доступные кабели, содержащие неэкранированную витую пару той или иной категории, и даже обычный телефонный провод. Такие кабели при их прокладке не требуют наличия какого-либо специального оборудования, а ограничение максимальной длины однопроводной линии регламентировано разработчиками на уровне 300м.

Основой архитектуры 1-Wire-сетей, является топология общей шины, когда каждое из устройств подключено непосредственно к единой магистрали, без каких-либо каскадных соединений или ветвлений. При этом в качестве базовой используется структура сети с одним ведущим или мастером и многочисленными ведомыми . Хотя существует ряд специфических приемов организации работы однопроводных систем в режиме мультимастера.

Конфигурация любой 1-Wire-сети может произвольно меняться в процессе ее работы, не создавая помех дальнейшей эксплуатации и работоспособности всей системы в целом, если при этих изменениях соблюдаются основные принципы организации однопроводной шины. Эта возможность достигается благодаря присутствию в протоколе 1-Wire-интерфейса специальной команды поиска ведомых устройств (Поиск ПЗУ ), которая позволяет быстро определить новых участников информационного обмена. Стандартная скорость отработки такой команды составляет ~75 узлов сети в секунду.

Благодаря наличию в составе любого устройства, снабженного сетевой версией 1-Wire-интерфейса, уникального индивидуального адреса (отсутствие совпадения адресов для приборов, когда-либо выпускаемых Dallas Semiconductor Corp., гарантируется самой фирмой-производителем), такая сеть имеет практически неограниченное адресное пространство. При этом, каждый из однопроводных приборов сразу готов к использованию в составе 1-Wire-сети, без каких-либо дополнительных аппаратно-программных модификаций. Однопроводные компоненты являются самотактируемыми полупроводниковыми устройствами, в основе обмена информацией между которыми, лежит управление изменением длительности временных интервалов импульсных сигналов в однопроводной среде и их измерение. Передача сигналов, для 1-Wire-интерфейса, асинхронная и полудуплексная, а вся информация, циркулирующая в сети, воспринимается абонентами либо как команды, либо как данные. Команды сети генерируются мастером и обеспечивают различные варианты поиска и адресации ведомых устройств, определяют активность на линии даже без непосредственной адресации отдельных компонентов, управляют обменом данными в сети и т.д.

Стандартная скорость работы 1-Wire-сети, которая составляет 15,4Кбит/сек, была выбрана, во-первых, с учетом обеспечения максимальной надежности передачи данных на большие расстояния, и, во-вторых, с учетом быстродействия наиболее широко распространенных типов микроконтроллеров, которые в основном должны использоваться при реализации ведущих устройств однопроводной шины. Это значение скорости обмена может быть уменьшено до любого возможного значения благодаря введению принудительной задержки между передачей в линию отдельных битов данных (растягиванию временных слотов протокола). Или увеличено за счет перехода на специальный ускоренный режим обмена (скорость Overdrive - до 125Кбит/сек), который допускается для отдельных типов однопроводных компонентов на небольшой по расстоянию, качественной, не перегруженной другими приборами линии связи.

Пожалуй, особенно привлекательным качеством технологии 1-Wire является исключительная простота настройки, отладки и обслуживания сети практически любой конфигурации, построенной по этому стандарту. Действительно, для начала работы достаточно любого персонального компьютера, недорогого адаптера 1-Wire-линии, а также свободно распространяемой фирмой Dallas Semiconductor Corp. программы iButton Viewer. При наличии этого небольшого числа составляющих контроль и управление сетью практически любой сложности, построенной на базе стандартных однопроводных компонентов, организуется буквально в течение нескольких минут. Программа iButton Viewer, в этом случае, позволяет с максимальным комфортом для разработчика идентифицировать любое из ведомых однопроводных устройств на линии и проверить в полном объеме правильность его функционирования в составе конфигурируемой сети.

Организация ведущих

Отдельные виды адаптеров, которые позволяют наделить любой персональный компьютер возможностью обслуживать в качестве мастера 1-Wire-сеть, выпускаются самой фирмой Dallas Semiconductor Corp. К ним относятся адаптеры для параллельного порта типа DS1410E, для COM-порта типа DS9097E и DS9097U, для USB-порта типа DS9490R. Эти приборы имеют различные функциональные возможности и конструктивные особенности, что обеспечивает разработчику максимальную свободу выбора при конструировании. А наличие у пользователя небольших навыков в создании электронной аппаратуры, позволяет легко произвести самостоятельную сборку схемы простейшего адаптера 1-Wire-сети для компьютера из небольшого числа доступных электронных компонентов.

Часто в качестве ведущего однопроводной шины выступает не компьютер, а простейший универсальный микроконтроллер. Для организации его сопряжения с 1-Wire-сетью используются различные программно-аппаратные методы. От простейшего, когда управляющая программа контроллера полностью реализует протокол 1-Wire-интерфейса на одном из своих функциональных двунаправленных выводов, связанных с однопроводной линией, до вариантов, позволяющих высвободить значительные ресурсы контроллера, благодаря использованию специализированных микросхем сопряжения с 1-Wire-сетью. Такие микросхемы подключаются к процессору, играющему роль ведущего однопроводной шины, через периферийные узлы ввода/вывода, входящие в состав любого универсального микроконтроллера. Например, устройство DS1481 предназначено для подключения непосредственно к функциональным выводам параллельного обмена контроллера.

А для организации мастера однопроводной системы на базе микроконтроллеров с 3хвольтовым питанием поставляются пассивные микросхемы DS1482, выполняющие согласование с уровнями сигналов стандартной 1-Wire-магистрали. Если же мастер однопроводной линии должен быть организован на базе стандартного узла последовательного интерфейса UART микроконтроллера, используется микросхема DS2480В, а микросхема DS2490 адаптирует однопроводную линию для работы от встроенного узла UBS-интерфейса. Обе микросхемы реализуют так называемый программируемый механизм активной подтяжки шины данных 1-Wire-магистрали, обеспечивающий качественную передачу сигналов в длинных проблемных линиях и увеличение нагрузочной способности ведущего по количеству обслуживаемых им ведомых устройств. Кстати большинство выше упомянутых адаптеров для персональных компьютеров, также построены на базе подобных микросхем. Более того, учитывая особенности работы современных операционных сред Windows, использование именно этих компонентов, которые по своей сути являются управляемыми по последовательному интерфейсу цифровыми автоматами, обеспечивает полномасштабное обслуживание однопроводных линий в реальном масштабе времени.

При построении сложных законченных микропроцессорных систем, имеющих дефицит машинного времени для реализации 1-Wire-протокола, наиболее рациональной является идея о возложении отдельной задачи по обслуживанию однопроводной линии на специальный узел заказной или полузаказной СБИС, для последующего сопряжения такого цифрового автомата, через системную магистраль, непосредственно с основным процессорным узлом. Фирма Dallas Semiconductor Corp. даже разработала набор рекомендаций по организации подобного узла под названием DS1WM, который был реализован, в том числе, специалистами Xilinx Inc. в виде законченного практического примера для программируемых перестраиваемых матриц семейств Virtex и Spartan. Более того, и Dallas Semiconductor Corp., которая в том числе известна как поставщик высокоскоростных контроллеров клона MCS51, выпускает специализированный связной микроконтроллер DS80C400, который содержит встроенный в кристалл автомат поддержки 1-Wire-протокола с возможностью реализации механизма активной подтяжки.

Достаточно перспективным представляется также направление, связанное с применением карманных компьютеров (или PDA (Personal Digital Assistant)) популярных платформ PalmOS, Handspring и WinCE/PocketPC для обслуживания однопроводных компонентов, в том числе работающих в составе 1-Wire-сетей. При этом, для подключения PDA к однопроводной шине применяют специализированные адаптеры последовательного порта, которые отличаются малым потреблением и построены на базе схемных решений, использующих выше перечисленные микросхемы сопряжения с 1-Wire-линией. Именно такой подход в настоящее время является наиболее рациональным при организации автономных и мобильных 1-Wire-систем.

Проблема подготовки программного обеспечения для управления мастером линии при обслуживании 1-Wire-сетей, также не представляется неразрешимой. Фирмой Dallas Semiconductor Corp. свободно распространяется профессиональный программный пакет разработчика iButton TMEX SDK, являющийся универсальным средством для профессиональных программистов, который значительно упрощает процесс создания программ для обслуживания однопроводных устройств, подключенных через стандартные типы адаптеров к персональным компьютерам, которые оснащены операционной системой Windows. Он содержит комплект отлаженных драйверов и утилит для реализации полномасштабного 1-Wire-протокола. В качестве среды взаимодействия с разработчиком пакет iButton TMEX SDK использует специальный стандартизованный программный API-интерфейс. Кроме того, с fttp-сервера кампании Dallas Semiconductor Corp. свободно доступен ряд примеров реализации 1-Wire-протокола для некоторых, наиболее популярных видов микропроцессоров, а также готовые библиотеки функциональных программных модулей однопроводного интерфейса для различных программных платформ.

Ведомые однопроводные компоненты

Ведомые однопроводные компоненты, содержащие 1-Wire-интерфейс, выпускаются в двух различных видах. Либо в корпусах MicroCAN, похожих внешне на дисковый металлический аккумулятор, либо в обычных корпусах для монтажа на печатную плату. Футляр MicroCAN полый внутри. Он выполняет функцию защиты содержащегося в нем полупроводникового кристалла однопроводной микросхемы, который соединен с внешним миром лишь через две, изолированные друг от друга, половинки корпуса, являющиеся по существу контактными площадками для подключения однопроводной линии. В подобных "таблеточных" корпусах поставляются, как правило, приборы iButton. Компоненты, которые предназначены для использования в составе 1-Wire-сетей, упаковываются в пластиковые корпуса, используемые для изготовления транзисторов и интегральных схем. Такой подход объясняется тем, что в отличие от устройств iButton однопроводные приборы для 1-Wire-сетей часто имеют более двух выводов. Помимо выводов, которые требуются для обмена данными по однопроводной магистрали, они располагают дополнительными выводами необходимыми, для обеспечения их питания и организации внешних цепей, связывающих такие приборы с объектами автоматизации, например, датчиками или исполнительными устройствами.

К наиболее простым ведомым однопроводным компонентам относятся кремневый серийный номер DS2401 (или модифицированный вариант этого прибора с внешним питанием DS2411) и электронный ключ DS2405, управляемый по 1-Wire-интерфейсу. Первое из этих устройств часто используется в качестве электронной метки, которая позволяет идентифицировать состояние, например, механического переключателя, коммутирующего линию данных однопроводного интерфейса. С помощью DS2405 можно дистанционно осуществить простейшие функции переключения внешнего оборудования, изменяя состояние управляемого ключа относительно возвратного проводника 1-Wire-магистрали.

Четырехканальный однопроводной АЦП типа DS2450 и двухканальный однопроводной счетчик, совмещенный с буферной памятью, типа DS2423 позволяют решать задачи, связанные с оцифровкой аналоговых и импульсно-временных сигналов. Первое из этих устройств по существу разрешает проблему обслуживания источников аналоговой информации в составе 1-Wire-сетей, к которым относится большинство выпускаемых в настоящее время датчиков различных физических величин (давление, вес, напряжение, влажность, ток, освещенность, ускорение, та же температура, но в диапазонах недоступных для регистрации посредством использования цифровых термометров и т.д.). Второй прибор может с успехом обслуживать многие виды применяемых в технике импульсных сенсоров (различные оптические счетчики, сенсоры количества оборотов, выходной сигнал с расходомеров-вертушек, емкостные датчики влажности, включенные в задающие цепи управляемых генераторов импульсов, счетчики уровня радиации, интегрирующие преобразователи напряжения в частоту и т.д.).

Но все-таки наиболее незаменимыми "кирпичиками", лежащими в основе фундамента однопроводных сетей автоматизации, являются универсальные сдвоенные адресуемые транзисторные ключи типа DS2406P (современная версия широко известных приборов DS2407P).

На базе этих устройств может быть реализована масса применений, и, прежде всего, узлы контроля логических состояний (уровней) и схемы обслуживания датчиков "сухого контакта", а также разнообразные ключевые схемы. Таким образом, именно благодаря использованию этих компонентов осуществляется сбор дискретной информации с территориально рассредоточенных датчиков (мониторов дверей, контакторов положения арматуры, любых датчиков имеющих выход ДА/НЕТ, как-то датчики положения, прохода, присутствия, пожарной и охранной сигнализации и т.д.). Подобные же приборы обеспечивают управление переключением любых видов силового оборудования, которые имеют два рабочих состояния: включено/выключено (нагревателей, кондиционеров, моторов, вентиляторов, арматурных задвижек и т.д.). Кроме того, двунаправленные, индивидуально программируемые выводы DS2406P могут быть использованы для организации медленного последовательного интерфейса между локальным микроконтроллером и 1-Wire-сетью. Не смотря на невысокую скорость при реализации подобного способа обмена информацией по однопроводной сети, когда один бит данных передается за две стандартные посылки, такое решение является приемлемым и достаточно надежным для большого числа конкретных применений.

Тем не менее, самой фирмой Dallas Semiconductor Corp. в качестве стандартного "мостика" обмена между любыми схемами, построенными на микроконтроллерах различных типов, и 1-Wire-сетями рекомендуется применение специализированной двухпортовой статической памяти DS2404. Поскольку к массиву памяти этого прибора возможен доступ, как со стороны однопроводной шины, так и со стороны подчиненного последовательного интерфейса, управляемого микроконтроллером, обмен информацией между ведущим сети и подчиненным интеллектуальным устройством, решающим какую-либо локальную задачу, производится достаточно легко. Более того, благодаря наличию в составе микросхемы DS2404 дополнительного узла часов реального времени и календаря, возможно снабжение данных, сохраняемых процессором в общем массиве памяти, индивидуальными временными метками.

На базе узла часов реального времени кристалла DS2404 кампанией Dallas Semiconductor Corp. выпускается еще два компонента, весьма полезных для создания однопроводных систем автоматизации. Это устройства DS2415 и DS2417. Применяя любой из этих приборов можно организовать дешевые часы/календарь с однопроводным сетевым интерфейсом. Кроме того, второе устройство благодаря наличию в его составе отдельного вывода прерывания, может также дополнительно управлять по времени переключением внешнего оборудования или обеспечивать синхронизацию работы других устройств с процессами, происходящими на 1-Wire-линии.

Значительно расширяет возможности однопроводных сетей по аналоговому управлению рассредоточенным, в том числе силовым, оборудованием цифровой потенциометр DS2890 укомплектованный сетевым 1-Wire-интерфейсом. Используя этот прибор можно создавать самые разнообразные системы удаленного безударного управления, благодаря возможности плавного изменения аналогового регулирующего сигнала по 256 градациям.

При всем многообразии однопроводных компонентов, очевидно, что наиболее универсальным из них является уникальный прибор DS2408. Это индивидуально двунаправленный восьмиразрядный свободно поразрядно программируемый по 1-Wire-шине порт ввода/вывода, который позволяет реализовать любой интерфейс между внешним устройством произвольной модификации и однопроводной линией. Этот прибор имеет двунаправленный вывод внешней синхронизации, обеспечивающий аппаратное тактирование передаваемых или принимаемых данных. Использование микросхемы DS2408 позволяет обеспечить управление посредством 1-Wire-шины: сосредоточенным двунаправленным вводом/выводом по 8 независимым каналам, приводом светодинамических, жидкокристаллических индикаторов и дисплеев различных видов, сканированием матричных клавиатур и дискретных датчиков самых различных типов, а так же позволяет реализовать действительно полномасштабный интерфейс с различными типами микроконтроллеров, как в последовательной, так и в параллельной моде.

Некоторые компоненты 1-Wire-сетей содержат в своем составе массив постоянной (однократно заполняемой пользователем) или энергонезависимой памяти того или иного объема. Это позволяет хранить специальную служебную информацию, связанную с применением конкретного компонента и особенностями его использования (идентификатор, территориальное положение, калибровочные коэффициенты, размерность, значение уставок по умолчанию и т.д.), непосредственно в составе однопроводного прибора. Благодаря этому для организации работы каждой новой однопроводной сети не нужно готовить отдельное специальное программное обеспечение, достаточно иметь одну стандартную программу, которая переконфигурируется в зависимости от специфики конкретной системы (конечно, если память всех компонентов 1-Wire-системы заполнена в соответствии с определенными, заранее оговоренными правилами). Если же в процессе работы системы требуется хранить дополнительные объемы информации, в распоряжении разработчика имеются специальные однопроводные приборы, содержащие как постоянную (DS2502/ DS2505/ DS2506), так и энергонезависимую (DS2430A/ DS2432/ DS2433) память различных объемов.

Целый ряд компонентов семейства iButton в корпусах MicroCAN также может быть использован в составе 1-Wire-сетей в качестве ведомых однопроводных устройств, которые решают специфические задачи идентификации, накопления, хранения и переноса информации. Например, для реализации процедуры идентификации в системах промышленной автоматизации обычно достаточно применения распространенных носимых электронных меток DS1990A. А многоточечный температурный мониторинг легко может быть выполнен сетью из нескольких приборов DS1921# или иначе устройств ТЕРМОХРОН, каждое из которых регистрирует температурные значения, измеренные через определённые, заранее заданные, промежутки времени и сохраняет полученную информацию в собственной энергонезависимой памяти, по существу, являясь программируемым "температурным магнитофоном". Для решения проблемы переноса данных, накопленных автономной 1-Wire-системой, к персональному компьютеру выпускаются разнообразные приборы iButton, которые в этом случае играют роль, так называемых, "транспортных таблеток". К подобным устройствам, прежде всего, относятся приборы энергонезависимой памяти, включающие в состав своей конструкции литиевый элемент питания. Это целый ряд "таблеток" начиная с DS1992 (1Кбит) до DS1996 (64Кбита), и среди них, конечно, модификация DS1994 (4Кбита), содержащая дополнительно узел часов реального времени, удобный для генерации временных меток сохраняемых данных или для организации автономных логгеров ресурса.

Кроме того, для этих же целей могут быть использованы приборы с электрически стираемой памятью типа EEPROM модификаций DS1971(32байта), DS1973(512байт) и DS1977(32Кбайта). При перемещении больших массивов информации "транспортную таблетку" удобно использовать совместно с адаптером USB-порта типа DS9490B, который обеспечивает высокую скорость передачи при обмене данными между устройством iButton и персональным компьютером. Если же речь идет только о решении задачи накопления и хранения данных в 1-Wire-сети, любая из перечисленных выше "транспортных таблеток" может быть легко включена в состав подобной сети. При этом для подключения приборов в корпусах MicroCAN к проводникам однопроводной линии используют специальные защелки типа DS9100 или DS9098P, или же более простые зажимы типа DS9094.

С точки зрения схемотехнической реализации однопроводного интерфейса и устойчивости работы на проблемных линиях все ведомые однопроводные компоненты исторически отличаются друг от друга, делясь при этом на группы:
1. DS2401, DS2405 - первые приборы с 1-Wire-интерфейсом в пластиковых корпусах, полностью аналогичны по схемотехнике первым моделям приборов iButton, которые были ориентированные для работы на коротких шинах (до 1994 года),
2. DS1820, DS2407P, DS2450, DS2404, DS2415, DS2417, DS1920 и т.д. - вторая версия, специально ориентированная для работы на длинных линиях (до 2000 года сейчас эти компоненты в основном снимаются с производства),
3. DS18S20, DS18B20, DS1822, DS2438, DS2406P, DS2409, DS2890, DS1973 и т.д. - третий вариант, более устойчивый к коллизиям на 1-Wire-магистрали по сравнению с предыдущим (с 2000 года),
4. DS2411, DS2408, DS1921#, DS1977 и т.д. - последний вариант, наиболее удачной по надежности схемотехники 1-Wire-интерфейса (c 2003 года).

Линия связи и топология

Большую роль при построении 1-Wire-сетей играет исполнение однопроводной линии связи. Как правило, такие линии имеют структуру, состоящую из трех основных проводников: DATA - шина данных, RET - возвратный или земляной провод, EXT_POWER - внешнее питание не только обслуживаемых ведомых устройств, но и внешних относительно них цепей датчиков и органов управления. В зависимости от способа прокладки, сопряжения с ведомыми устройствами и используемых при прокладке материалов, в соответствии с ниже следующей Таблицей различают три основных варианта качества организации 1-Wire-сетей, каждый из которых подразумевает использование особой технологии и аксессуаров при реализации линии.

Часто при организации сложных однопроводных сетей, с целью удобства проводки линии связи, уменьшения ее протяженности или снижения электрической нагрузки на линии благодаря уменьшению одновременно работающих на ней устройств, необходимо обеспечить древовидную или лучевую структуру магистрали, значительно отличающуюся от структуры общей шины. Для этого используют ветвления 1-Wire-сетей одного или нескольких уровней. Основным элементом при построении таких ветвей является либо обычный адресуемый ключ типа DS2406, который обеспечивает ветвление благодаря коммутации возвратного провода однопроводной линии, либо специализированный ветвитель DS2409, коммутирующий непосредственно шину данных 1-Wire-линии. Последний вариант является более предпочтительным т.к. компоненты на отключенной ветви, ведомой ветвителем, остаются всегда в активном состоянии. Поочередное обслуживание мастером сети каждой из ветвей, при отключенных остальных ветвях, позволяет значительно увеличить общую длину линии и количество ведомых устройств на ней.

Если же организация 1-Wire-системы на базе персонального компьютера связанна с особыми трудностями, наиболее оптимально использование интеллектуального адаптера для COM-порта типа LINK. Он реализован на базе микропроцессора. При этом, устройство, полностью эмулируя со стороны последовательного порта работу популярного адаптера DS9097U, производства Dallas Semiconductor Corp., и таким образом поддерживая все разработанное ранее для персональных компьютеров программное обеспечение, благодаря встроенным собственным интеллектуальным ресурсам реализует льготный режим работы однопроводных приборов на проблемных 1-Wire-линиях в условиях сложной помеховой обстановки. LINK многократно улучшает механизм активной подтяжки на линии, что позволяет действительно получать идеальные сигналы обмена при длинах кабеля более 300 метров и числе сопровождаемых однопроводных компонентов большем 100шт, а использование процессором прибора алгоритмов цифровой фильтрации многократно улучшает устойчивость обслуживаемой однопроводной линии к электромагнитным помехам.

Применения

О признании однопроводной шины в качестве международного стандарта и серьезности отношения к этому интерфейсу со стороны маститых разработчиков и производителей электроники говорят многочисленные факты. Например, нет практически ни одного универсального микроконтроллера, в литературе по применению которого не обсуждались бы способы организации на его базе мастера однопроводной линии.

Наиболее последовательно отстаивает линию на использование технологии 1-Wire-сетей в области автоматизации американская фирма Embedded Data Systems, LLC (приемница PointSix, Inc.). Можно сказать, что эта кампания сделала себе имя на внедрение и пропаганде достижений однопроводной шины в области автоматизации. И это, не смотря на то, что основной областью ее деятельности является не автоматизация оранжерей и не создание систем пожарной сигнализации, а разработка средств и систем для обслуживания высокотехнологичных отраслей машиностроения и химической промышленности, и даже создание уникального экспериментального и научного оборудования. Подтверждением этому служит широчайший спектр продукции, который выпускается фирмой (разнообразные зонды для измерения высоких и низких температур, датчики влажности, давления и кислотности с особыми функциями, специальные оптические сенсоры, платы сбора информации, устройства сопряжения с различным аналитическим оборудованием и многое другое), причем каждый из приборов содержит элементы однопроводной технологии.

К перспективным примерам в области применения 1-Wire-технологии для автоматизации, несомненно, можно отнести деятельность таких известных мировых производителей как SYSTRONIX или AAG Electronica. LLC.

Линейки законченных инструментальных средств, а также многочисленные примеры их использования, и высокий рейтинг продаж поставляемых изделий, позволяют говорить об успешности и востребованности концепции однопроводной шины применяемой этими фирмами для решения самых разнообразных проблем распределенной автоматизации.

Другим примером, наглядно демонстрирующим на практике возможности технологии однопроводной шины, является проект построения полностью автоматических метеорологических станций (1-Wire Weather Station), который разрабатывался совместно фирмами PointSix, Inc., AAG Electronica LLC, Dallas Semiconductor Corp. и Texas Weather Instruments, Inc. Вначале (еще в середине 90-х годов) было создано несколько экспериментальных систем, построенных на базе ведущего персонального компьютера с адаптером DS9097U, который является сердцем комплекса, из трех термометров DS18S20, выполняющих контроль температуры, микросхемы DS2438 для обслуживания датчика влажности воздуха, компонента DS2423 для определения скорости ветра и 16-ти электронных меток DS2401 определяющих его направление. Эти первые метеосистемы были установлены и успешно испытаны в процессе длительной эксплуатации в штате Техас. Причем отдельные из них комплектовались дополнительными однопроводными решениями, которые обеспечивали контроль сигналов от датчиков: барометрического давления, разрядов молнии, количества осадков на поверхности, солнечной активности, влажности почвы и т.д. Данные со всех сенсоров, регистрируемые каждой из подобных систем, поступали в персональный компьютер и через Интернет транслировались в режиме реального времени на центральный операторский пульт, где выполнялся прием и архивация данных о погоде региона, получаемый благодаря анализу информации от нескольких территориально рассредоточенных станций. После успешного завершения проекта Texas Weather Instruments Inc. уже на протяжении нескольких лет успешно торгует готовыми полностью автоматическими метеостанциями, не требующими обслуживания человеком. Причем популярность подобных устройств настолько велика по всему миру, что фирма Dallas Semiconductor Corp. была вынуждена начать производство специализированного набора микросхем WS-1, который включает комплект однопроводных компонентов, минимально необходимый для построения подобной станции. А полную комплектацию подобных систем для многочисленных пользователей со всего мира, включая платы для самостоятельной сборки, сертифицированные механические и конструкционные элементы, выполняет фирма AAG Electronica LLC.

Довольно перспективной областью, в которой в полной мере используются преимущества технологии 1-Wire-сетей, и которой, особенно много внимания уделяет кампания Dallas Semiconductor Corp. является менеджмент автономных химических источников тока - аккумуляторных батарей. Под менеджментом здесь понимается, - прежде всего, строгая и полная идентификация источников энергии, сохранение в памяти каждого отдельного встроенного в батарею электронного устройства особенностей ее изготовления и индивидуальных технических характеристик, наиболее полный мониторинг их основных эксплуатационных параметров на протяжении всего срока службы, а также формирование корректного управляющего воздействия, связанного с восстановлением заряда обслуживаемого автономного источника энергии. От правильного менеджмента и знания истории эксплуатации батареи во многом зависит выбор алгоритма ее повторного заряда, что непосредственно связанно с эффективностью использования и сроком службы многих типов аккумуляторов. Для этого каждая из батарей многоэлементных энергетических конструкций (особенно для мобильных устройств и средств бесперебойного питания) снабжается индивидуальным однопроводным компонентом, превращаясь по существу в интеллектуальный системный элемент автономного питания. Целый ряд микросхем, выпускаемых фирмой, связан с этим направлением. Dallas Semiconductor Corp. сегодня доминирует на рынке интеллектуальных систем обслуживания автономных источников питания, исповедуя при этом новый комплексный сетевой подход к проблеме менеджмента энергетических элементов. При этом, используются 1-Wire-решения, позволяющие организовать многоточечную шину обслуживания устройств менеджмента и управления зарядом, что дает возможность сопровождать не только отдельные источники энергии, но и целые батареи, составленные из множества отдельных подобных элементов. Более того, подобные устройства способны обеспечить не только идентификацию или простейший температурный контроль аккумуляторов, но и полномасштабный мониторинг их основных параметров (напряжение, ток, разряд, контроль "короткого замыкания" и т.д.) на протяжении всего времени эксплуатации. Результаты, накопленные такими приборами, сохраняются во встроенной энергонезависимой памяти либо в виде гистограммы (DS2436), либо в виде массива последовательных отсчетов "привязанных" к временным меткам (DS2438).

В настоящее время кампания Dallas Semiconductor Corp. выпускает целый ряд прецизионный кристаллов для мониторинга, менеджмента, защиты и управления восстановлением заряда автономных источников питания самых различных типов и назначений (DS2720, DS2740, DS2751, DS2770 и т.д.). К ним, в том числе, относятся кристаллы семейства DS276#, которые в отличие от иных модификаций подобных устройств, требующих внешней обвязки с использованием прецизионных и стабильных пассивных компонентов, обеспечивают более высокую точность при контроле тока, расходуемого контролируемой батареей. Это достигается, в том числе, за счет встроенной калиброванной резистивной схемы (шунта), выполненной по специальной полупроводниковой технологии, а также благодаря наличию в составе подобных приборов специального аппаратно-программного механизма предварительной калибровки.

Ограничения и сопряжение с промышленными сетями

Безусловно, 1-Wire-сети имеют свою нишу для применения при построении систем автоматизации. Бессмысленно всерьез использовать их для передачи больших массивов информации, при построении, к примеру, систем видео-наблюдения или скоростного обмена, связанных с обслуживанием быстрых процессов, или же сравнивать возможности однопроводных сетей с такими мощными сетевыми промышленными интерфейсами, как ProfiBus, FeldBus, LonWorks, CAN, Industrial Internet и т.д. Можно даже сформулировать основные на сегодняшний день ограничения для применения систем на базе однопроводных 1-Wire-сетей в области автоматизации:

  • необходимость непрерывной временной синхронизации или синхронной работы отдельных устройств в сети (эта проблема может быть решена вводом в структуру шины сети дополнительной линии для передачи сигнала общей синхронизации),
  • низкая скорость обмена информацией, и как следствие невозможность высокой динамики при обслуживании быстрых процессов в режиме реального времени (если контролируемый быстрый процесс является относительно непродолжительным, локальный микроконтроллер в составе однопроводной шины может обслужить его, сохранив результирующие данные в буферной памяти, а затем уже осуществить их передачу непосредственно к мастеру),
  • сложность в реализации мультимастерного режима работы сети (специализированный ветвитель 1-Wire-сетей DS2409 разрешает проблему конфликтов между несколькими ведущими на одной однопроводной шине).

Как видно из замечаний приведенных в скобках, даже эти очевидные для 1-Wire-сетей, трудности не являются непреодолимыми. Более того, существуют подходы, позволяющие органично интегрировать медленные однопроводные территориально рассредоточенные структуры в состав таких производительных сетей как CAN и Industrial Internet. Это достижимо благодаря применению специальных аппаратно-программных решений, реализуемых на базе современных микроконтроллеров, а так же уникального инструмента кампании Dallas Semiconductor Corp. - устройства TINI (Tiny InterNet Interface ).

TINI400 - это целая микросистема, основой которой является центральный процессор, реализованный на высокопроизводительном сетевом микроконтроллере DS80С400, который объединяет ресурсы целого ряда наиболее распространенных сетевых интерфейсов, как-то: RS232, 1-Wire, CAN 2.0B, Ethernet, не говоря о возможности использования параллельной шестнадцатиразрядной синхронной магистрали, а также автономных узлов для организации стандартных локальных последовательных интерфейсов I2C и SPI. Кроме того, плата TINI400 содержит 1Мбайт программной Flash-памяти, 1Мбайт статического ОЗУ, узел часов реального времени, литиевую батарею и кремниевый идентификационный номер. Работает TINI400 под управлением мощной операционной среды, которая включает в себя поддержку TCP/IP и виртуальной машины Java, которая тщательно отработана и испытана еще на модели TINI предыдущего поколения - плате TINI390. Последнее определяется тем фактом, что технология программной поддержки для TINI390 на протяжении нескольких лет развивалась специалистами Dallas Semiconductor Corp. совместно с сотрудниками компании Sun Microsystems, Inc., являясь при этом полностью открытым проектом. Такой подход позволил иметь максимально эффективную обратную связь с конечными пользователями, что помогло выявить и устранить большинство недостатков программного обеспечения. И сейчас на сайте Dallas Semiconductor Corp. можно найти всю необходимую документацию и средства разработки программного обеспечения, что значительно облегчает построение на базе устройства TINI локальных однопроводных систем удаленного контроля и управления, объединяющих достоинства быстрых и производительных, но дорогих, и медленных, но дешевых и эффективных интерфейсов.

В заключении необходимо еще раз отметить безусловную эффективность и рациональность использования технологии 1-Wire при построении систем автоматизации контроля и управления для разнообразного рассредоточенного оборудования, когда не требуется высокая скорость при обслуживании, но необходима существенная гибкость и наращиваемость при не высоких затратах на реализацию.

Информационное взаимодействие с "таблетками"?логгерами iButton и любая их поддержка осуществляется посредством т.н. 1-Wire-интерфейса, разработанного в конце 90?х годов фирмой Dallas Semiconductor, которая с 2001 году является частью компании Maxim Integrated. Этот интерфейс регламентирован разработчиками для применения в четырех основных сферах?приложениях:

  • обслуживание устройств, упакованных в специальные корпуса can F# (ранее MicroCAN), для решения задач идентификации, аутентификации, авторизации, защиты информации, контроля доступа, обеспечения электронных платежей, переноса или преобразования информации (технология iButton),
  • программирование встроенной памяти интегральных компонентов,
  • идентификация элементов оборудования и защита доступа к ресурсам электронной аппаратуры,
  • элементы и системы автоматизации (технология 1-Wire-сетей).

Первое из этих направлений, связанное в том числе с обслуживанием "таблеток"?логгеров iButton, очень широко распространено в мире, как и сами устройства iButton (подробнее см. здесь). Второе с успехом обеспечивает возможность легкой перестройки функций полупроводниковых компонентов, производимых компанией Maxim Integrated и имеющих малое количество внешних выводов. Третье позволяет обеспечить недорогую, но достаточно эффективную идентификацию и надежную защиту самого разнообразного оборудования. Что касается четвертого применения, то реализация локальных распределенных систем на базе 1-Wire-сетей является оптимальным для многих практических задач автоматизации.

Так в чем же особенность этого сетевого стандарта? Ведь в качестве среды для передачи информации по 1-Wire-магистрали чаще всего возможно использование обычного телефонного кабеля и, следовательно, скорость обмена в этом случае невелика. Однако если внимательно проанализировать большинство реальных объектов, требующих автоматизации, то больше чем для 60% из них предельная скорость обслуживания в 16,3 Кбит/с будет более чем удовлетворительной. А другие преимущества 1-Wire-технологии, такие как:

  • простое и оригинальное решение адресуемости абонентов,
  • несложный протокол,
  • простая структура магистрали,
  • малое потребление компонентов,
  • легкое изменение конфигурации сети,
  • значительная протяженность магистрали,
  • исключительная дешевизна всей технологии в целом,
отражают очевидную рациональность и высокую эффективность этого инструмента при решении задач комплексной автоматизации в самых различных областях деятельности.

Основные принципы

1-Wire-net представляет собой информационную сеть, использующую для осуществления цифровой связи 1-Wire-магистраль, состоящую из шины данных (DATA) и возвратной шины (RET). Таким образом, для реализации среды обмена этой сети могут быть применены доступные кабели, содержащие неэкранированную витую пару той или иной категории, и даже обычный телефонный шнур. Такие кабели при их прокладке не требуют наличия какого?либо специального оборудования, а ограничение максимальной протяжённость кабеля 1-Wire-магистрали регламентировано разработчиками на уровне 300 м.

Основой архитектуры 1-Wire-сетей является топология общей шины, когда каждый из абонентов подключён непосредственно к единой магистрали, без каких?либо каскадных соединений или ветвлений. При этом в качестве базовой используется структура сети с одним ведущим или мастером и многочисленными ведомыми абонентами (подробнее см. здесь).

Конфигурация любой 1-Wire-сети может произвольно меняться в процессе её работы, не создавая помех дальнейшей эксплуатации и работоспособности всей системы в целом, если при этих изменениях соблюдаются принципы организации 1-Wire-интерфейса. Эта возможность достигается благодаря присутствию в протоколе 1-Wire-интерфейса специальной команды поиска ведомых устройств (Поиск ПЗУ), которая позволяет быстро определить новых участников информационного обмена. Стандартная скорость отработки такой команды составляет ~75 узлов сети в секунду.

[Каждый из 1-Wire-компонентов имеет уникальный номер (адрес), как и денежные знаки] Благодаря наличию в составе любого устройства, снабженного 1-Wire-интерфейсом, индивидуального адреса, столь же уникального, как и номер денежной купюры (отсутствие совпадения адресов для компонентов, когда?либо выпускаемых Maxim Integrated, гарантируется самой фирмой?производителем), такая сеть имеет практически неограниченное адресное пространство. При этом каждый из 1-Wire-компонентов сразу готов к использованию в составе 1-Wire-сети, без каких?либо дополнительных аппаратно?программных модификаций.

1-Wire-компоненты являются самотактируемыми полупроводниковыми устройствами, в основе обмена информацией между которыми лежит управление длительностью импульсных сигналов, предаваемых по 1-Wire-магистрали, и их измерение. Передача сигналов для 1-Wire-интерфейса - асинхронная и полудуплексная, а вся информация, циркулирующая в сети, воспринимается абонентами либо как команды, либо как данные. Команды сети генерируются мастером и обеспечивают различные варианты поиска и адресации ведомых устройств, определяют активность на 1-Wire-магистрали даже без непосредственной адресации отдельных абонентов, управляют обменом данными в сети и т.д.

[Схема порта мастера 1-Wire-сети] Стандартная скорость работы 1-Wire-сети, изначально нормированная на уровне 16,3 Кбит/с, была выбрана, во?первых, исходя из обеспечения максимальной надёжности передачи данных на большие расстояния, и, во?вторых, с учётом быстродействия наиболее широко распространённых типов универсальных микроконтроллеров, которые в основном должны использоваться при реализации ведущих устройств 1-Wire-сети. Эта скорость обмена может быть снижена до любой возможной, благодаря введению принудительной задержки при передаче по магистрали отдельных битов данных (т.е. растягиванию временных слотов протокола). Однако увеличение скорости обмена в 1-Wire-сети с длиной кабеля магистрали более 1 м выше значения 16,3 Кбит/с приводит к сбоям и ошибкам. Если же протяженность 1-Wire-магистрали не превышает 0,5 м, то скорость обмена может быть значительно увеличена за счёт перехода на специальный режим ускоренной передачи (Overdrive ? до 125 Кбит/с), который допускается для отдельных типов 1-Wire-компонентов. Как правило, такой режим обмена аппаратно реализован для 1-Wire-компонентов, имеющих большой объём встроенной памяти, предназначенных для эксплуатации в составе небольшой, но качественной и не перегруженной другими устройствами 1-Wire-сети. Типичным примером таких компонентов являются микросхемы семейства iButton.

[Вид оболочки пакета OneWireViewer (для боле подробного просмотра щелкните левой кнопкой мыши)] Пожалуй, особенно привлекательным качеством 1-Wire-технологии является исключительная простота настройки, отладки и обслуживания сети практически любой конфигурации, построенной по этому стандарту. Действительно, для начала работы достаточно любого персонального компьютера, недорогого адаптера 1-Wire-интерфейса, а также свободно распространяемого компанией Maxim Integrated тестового программного пакета разработчика OneWireViewer. При наличии этого небольшого числа составляющих организация функционирования 1-Wire-сети практически любой сложности, построенной на базе стандартных 1-Wire-компонентов, реализуется буквально в течении нескольких минут. Возможности, предоставляемые программным пакетом OneWireViewer, позволяют с максимальным комфортом для разработчика идентифицировать любой 1-Wire-компонент, подключённый к 1-Wire-магистрали, ведомой компьютером через адаптер, и проверить в полном объёме правильность его функционирования в составе конфигурируемой 1-Wire-сети. Организация ведущих

Компания Maxim Integrated выпускает несколько видов адаптеров, которые позволяют наделить любой персональный компьютер функциями мастера 1-Wire-сети. К ним относятся адаптеры семейства DS9097U для COM?порта и адаптеры семейства DS9490R для USB?порта. А адаптер типа DS9481R обеспечивает возможность реализации на базе компьютера мастера 1-Wire-сети по спецификации USB 2.0. Эти устройства имеют различные функциональные возможности и конструктивные особенности, что обеспечивает разработчику максимальную свободу выбора при конструировании.

Часто в качестве ведущего 1-Wire-сети выступает не компьютер, а простейший универсальный микроконтроллер. Для организации его сопряжения с 1-Wire-магистралью используются различные программно?аппаратные методы. От простейшего, когда управляющая программа контроллера полностью реализует протокол 1-Wire-интерфейса на одном из своих функциональных двунаправленных выводов, связанных с шиной данных 1-Wire-магистрали, до вариантов, позволяющих высвободить значительные ресурсы контроллера, благодаря использованию специализированных микросхем поддержки взаимодействия с 1-Wire-сетью. Такие микросхемы подключаются к процессору, играющему роль ведущего 1-Wire-сети, через периферийные узлы ввода/вывода, входящие в состав любого универсального микроконтроллера. Например, драйвера семейства DS2482 позволяют управлять 1-Wire-сетью, используя популярный микроконтроллерный интерфейс I2C. Если же мастер 1-Wire-сети должен быть организован на базе типового узла последовательного интерфейса UART микроконтроллера, используется микросхема DS2480В. Эта микросхема, также как микросхемы DS2482 и DS2483, реализует так называемый программируемый механизм активной подтяжки шины данных 1-Wire-магистрали. Использование активной подтяжки гарантирует качественную передачу сигналов в проблемных 1-Wire-сетях с протяжённой магистралью. Также применение активной подтяжки обеспечивает увеличение нагрузочной способности ведущего по количеству обслуживаемых им ведомых абонентов сети. Кстати, адаптеры семейства DS9097U для COM?порта персонального компьютера, также построены именно на базе микросхемы DS2480В. Более того, учитывая особенности современных операционных сред Windows, именно использование микросхемы?драйвера DS2480В, которая по своей сути является управляемым по последовательному интерфейсу цифровым автоматом, способным взять на себя значительную часть функций по реализации сетевого протокола, и обеспечивает полномасштабное обслуживание 1-Wire-сети в реальном масштабе времени.

Ведомые 1-Wire-компоненты

[Кристалл 1-Wire в корпусе MicroCAN] [Так выглядят кристаллы 1-Wire-компонентов] Ведомые 1-Wire-компоненты, содержащие в составе своей схемы узел 1-Wire-интерфейса, выпускаются в двух различных видах. Либо в корпусах MicroCAN, похожих внешне на дисковый металлический аккумулятор, либо в обычных корпусах для монтажа на печатную плату. Футляр MicroCAN полый внутри. Он выполняет функцию защиты содержащегося в нём полупроводникового кристалла микросхемы с узлом 1-Wire-интерфейса, который соединён с внешним миром лишь через две, изолированные друг от друга, половинки металлического корпуса, являющиеся, по существу, контактными площадками для подключения 1-Wire-магистрали. В подобных “таблеточных” корпусах поставляются устройства iButton. Компоненты, которые предназначены для использования в составе 1-Wire-сетей, упаковываются в пластиковые корпуса, используемые для изготовления транзисторов и интегральных схем. Такой подход объясняется тем, что в отличие от устройств iButton компоненты, специально ориентированные для применения в составе 1-Wire-сетей, часто имеют более двух выводов. Помимо выводов, которые требуются для обмена данными по 1-Wire-магистрали, они располагают дополнительными выводами, необходимыми для обеспечения их питания и организации внешних цепей, связывающих такие устройства с объектами автоматизации, например, датчиками или исполнительными устройствами.

К наиболее простым ведомым 1-Wire-компонентам относятся кремниевый серийный номер DS2401 (или модифицированный вариант этого устройства с внешним питанием DS2411) и электронный ключ DS2413P, управляемый по 1-Wire-интерфейсу. Первое из этих устройств часто используется в качестве электронной метки, которая позволяет идентифицировать состояние, например, механического переключателя, коммутирующего шину данных 1-Wire-магистрали. С помощью DS2413P можно дистанционно осуществить простейшие функции переключения внешнего оборудования, изменяя состояние управляемого ключа относительно возвратной шины 1-Wire-магистрали (в настоящее время ключ DS2405 уже не поставляется, поскольку доступна более функционально совершенная замена – DS2413P).

[Термометры с 1-Wire-интерфейсом применяют во многих лабораториях мира] Однако наиболее популярными ведомыми 1-Wire-компонентами, на базе которых реализовано, пожалуй, наибольшее количество практических приложений, безусловно, являются цифровые термометры типа DS18S20 (более известные до 2001 года под обозначением уже давно снятого с производства устройства DS1820, успевшего стать международным брендом). Преимущества этих цифровых термометров с точки зрения организации магистрали, по сравнению с любыми другими интегральными температурными сенсорами, а также неплохие метрологические характеристики и хорошая помехоустойчивость, уже на протяжении двух десятков лет неизменно выводят их на первое место при построении многоточечных систем температурного контроля в диапазоне от –55°С до +125°С. Такие сенсоры позволяют не только осуществлять непосредственный мониторинг температуры в режиме реального времени, но и благодаря наличию встроенной энергонезависимой памяти температурных уставок, могут обеспечивать [Внешний вид популярнейших цифровых термометров семейства DS18#2# от Maxim Integrated] приоритетную оперативную сигнализацию в 1-Wire-сети о факте выхода контролируемого параметра за пределы заданных значений. Также поставляются более совершенные термометры DS18В20, у которых скорость преобразования определяется разрядностью результата, программируемой непосредственно по 1-Wire-интерфейсу. Цифровой код, считываемый с такого термометра, является прямым результатом измеренного значения температуры и не нуждается в дополнительных преобразованиях. Некалиброванная, но в тоже время более дешёвая версия микросхемы DS18B20 под обозначением DS1822 представляется оптимальным решением для разработчиков недорогих многоточечных систем контроля температурных процессов.

До 2010 года компания Maxim Integrated также поставляла целый спектр дискретных микросхем, оснащённых 1-Wire-интерфейсом и реализующих функции отдельных элементов систем автоматизации. Среди них: четырехканальный 16?разрядный АЦП типа DS2450, двухканальный счетчик, совмещённый с буферной памятью, типа DS2423, цифровой потенциометр на 256 градаций типа DS2890, узлы часов реального времени и календаря типа DS2415 и типа DS2417, причём последнее устройство через особый вывод прерывания, обеспечивало управление по времени переключением внешнего оборудования. Однако, как показал десятилетний опыт развития 1-Wire-сетей, для реальных объектов автоматизации, 1-Wire-компоненты, исполняющие отдельные функции, [Микросистемы, содержащие множество функциональных узлов, обеспечивают эффективную поддержку управления питанием многих портативных устройств] менее востребованы по сравнению с устройствами ориентированными на реализацию сразу нескольких функций на одном кристалле. Такие решения получили название 1-Wire-микросистем. Наиболее характерным представителем 1-Wire-микросистемы является микросхема DS2438, которая помимо узла 1-Wire-интерфейса также содержит узлы: цифрового термометра, АЦП с недифференциальным входом, токовый АЦП с дифференциальным входом, программируемый таймер, Flash?память, набор регистров для хранения данных общего назначения. Весь этот арсенал в составе одного 1-Wire-компонента позволяет легко решить, например, задачу по эффективному обслуживанию и сопровождению энергетических элементов питания различных типов. В настоящее время компания Maxim Integrated выпускает более эффективные 1-Wire-микросистемы: DS2760, DS2775, DS2776, DS2777, DS2781 и т.п.

[Сдвоенный ключ DS2406 – самый универсальный и востребованный элемент 1-Wire-сетей] Тем не менее наиболее незаменимыми «кирпичиками», лежащими в основе фундамента 1-Wire-сетей автоматизации, оказались универсальные сдвоенные адресуемые транзисторные ключи типа DS2406P. На базе этих устройств может быть реализована масса применений и, прежде всего, узлы контроля логических состояний (уровней) и схемы обслуживания датчиков «сухого контакта», а также разнообразные ключевые схемы. Таким образом, именно благодаря использованию этих компонентов осуществляется сбор дискретной информации с территориально рассредоточенных датчиков (мониторов дверей, контакторов положения арматуры, любых сенсоров, имеющих выход ДА/НЕТ, как?то: датчики положения, прохода, присутствия, пожарной и охранной сигнализации и т.д.).

[Универсальный двунаправленный порт DS2408 значительно расширяет возможности 1-Wire-сетей] Однако при всём многообразии 1-Wire-компонентов, все?таки наиболее универсальным из них является уникальная микросхема DS2408. Это двунаправленный восьмиразрядный свободно поразрядно программируемый по 1-Wire-магистрали порт ввода/вывода, который позволяет реализовать любой интерфейс между всяким цифровым устройством и 1-Wire-сетью. Использование порта DS2408 позволяет посредством 1-Wire-интерфейса обеспечить простое и гибкое управление вводом/выводом по 8 независимым каналам. Таким образом, на базе этого устройства возможна организация привода светодинамических или жидкокристаллических индикаторов и дисплеев различных видов, осуществление сканирования матричных клавиатур и дискретных датчиков самых различных типов.

Если же эксплуатация 1-Wire-сети или любого иного электронного оборудования, имеющего минимум выводов для реализации обмена данными, требует обеспечения хранения дополнительных объёмов информации, в распоряжении разработчика имеются специальные 1-Wire-компоненты, содержащие только лишь узлы ЕPROM (DS2502/ DS2505/ DS2506) или EЕPROM (DS2431/ DS2432/ DS2433/ DS28E02/ DS28E04/ DS28EC20) различных объёмов. Причём некоторые из этих микросхем имеют специальные узлы механизма шифрования SHA, что позволяет довольно просто обеспечить достаточно высокий уровень криптографической защиты данных, как при их передаче, так и при их хранении. "Таблетки" iButton и 1-Wire-сеть

[На базе устройств iButton также возможно построение 1-Wire-сетей] Целый ряд компонентов семейства iButton в корпусах MicroCAN также может быть использован в составе 1-Wire-сетей в качестве ведомых абонентов, которые решают специфические задачи идентификации, преобразования, накопления, хранения и переноса информации. Например, для реализации процедуры идентификации в системах промышленной автоматизации обычно достаточно применения распространённых носимых электронных меток DS1990A. Более сложное устройство DS1904 позволяет синхронизовать работу узлов часов/календаря микропроцессорных систем. [Устройство ТЕРМОХРОН DS1921 является удобным защищённым автономным логгером] А многоточечный температурный контроль может быть выполнен сетью из нескольких “таблеток” DS1920. Если же использовать “таблетки”-логгеры DS1921/DS1922/DS1923/DS1925 или иначе устройства ТЕРМОХРОН и устройства ГИГРОХРОН, каждое из которых регистрирует или температурные значения, или значения температуры и относительной влажности, измеренные через определённые, заранее заданные, промежутки времени и сохраняет полученную информацию в собственной энергонезависимой памяти, легко построить территориально распределённую систему мониторинга микроклимата любой сложности.

Для решения проблемы переноса данных, накопленных территориально удалённой автономной 1-Wire-системой, к стационарному персональному компьютеру удобны различные типы микросхем памяти из семейства iButton, которые в этом случае играют роль так называемых «транспортных таблеток». К подобным устройствам относятся, прежде всего, устройства энергонезависимой памяти, включающие в состав своей конструкции литиевый элемент питания. Это целый ряд “таблеток”: DS1992L (1 Кбит), DS1993L (4 Кбита), DS1995L (16 Кбит), DS1996L (64 Кбита). Кроме того, для целей транспорта информации могут быть использованы устройства с памятью типа EEPROM модификаций DS1971(32 байта), DS1972(128 байт), DS1973(512 байт) и DS1977(32 Кбайта). «Транспортные таблетки» входящие в состав семейства микросхем iButton EPROM?памяти? DS1982 (1 Кбит), DS1985 (16 Кбит), DS1986 (64 Кбита), ? удобны для заполнения памяти микропроцессорных систем (например, калибровочными константами или начальными установочными значениями).

Для сопряжения устройств в корпусах MicroCAN с шинами 1-Wire-магистрали используют специальные защелки типа DS9100 или DS9098P, или же более простые зажимы типа DS9094. Однако следует учитывать, что при организации 1-Wire-сети на базе “таблеток” iButton с помощью таких приспособлений теряется весь смысл в суперзащитных свойствах их корпуса. Поскольку подобные варианты включения этих “таблеток” в состав абонентов 1-Wire-сети делают соединение в любом случае уязвимым для внешних воздействий (воды, пыли, грязи, инея и т.д.). Поэтому вопрос об организации защищённых от внешних воздействий 1-Wire-сетей, реализованных на базе устройств iButton, требует особого подхода.

Магистраль и топология 1-Wire-сети

Большую роль при построении 1-Wire-сетей играет исполнение 1-Wire-магистрали. Как правило, протяжённые 1-Wire-магистрали имеют структуру, состоящую из трёх основных проводников: DATA ? шина данных, RET (GND) – возвратная шина или земляной провод, EXT_POWER – внешнее питание не только обслуживаемых ведомых абонентов, но и внешних относительно них цепей датчиков и органов управления. В зависимости от технологии прокладки кабеля, способа его сопряжения с ведомыми абонентами, особенностей используемых приёмов монтажа и качества применяемых материалов, в соответствии с нижеследующей Таблицей, различают четыре основных варианта организации 1-Wire-сетей, каждый из которых подразумевает использование особой технологии и аксессуаров при реализации магистрали.

Классификация 1-Wire-сети Протяжённость кабеля магистрали Количество ведомых абонентов Тип используемого кабеля Топология Мастер 1-Wire-сети
Миниатюрная До 5 м До 10 шт Любой Свободная Любой ведущий с пассивной подтяжкой (резистор к питанию)
Короткая До 30 м До 50 шт 4-х проводный телефонный Общая шина с патчами до 0,5 м Адаптеры на базе дискретных компонентов DS9097E, DS1410E
Средняя До 100 м До 100 шт Витая пара 3 категории Строгая общая шина Активная подтяжка (DS2480В, DS2482, DS2483 или специальное схемное решение (MAX6314))
Длинная До 300 м До 250 шт Витая пара 5 категории или IEEE1394 (Firewire) Общая шина без разрыва ствола Link или программная модификация временных слотов 1-Wire-протокола

[Адаптер LinkUSB – наиболее эффективный привод для проблемных 1-Wire-сетей] Если же организация 1-Wire-сети на базе персонального компьютера связана с особыми трудностями (большая протяжённость кабеля магистрали, большое количество ведомых абонентов, плохое качество кабеля или сложная топология, много помех и т.д.), то наиболее оптимально использование интеллектуального адаптера для COM-порта типа Link или его аналога для USB-порта адаптера LinkUSB. Основой любого из таких адаптеров является микропроцессор, оснащённый специализированной программой управления. При этом все устройства, реализованные по технологии Link, полностью эмулируют со стороны последовательного порта работу популярного адаптера DS9097U производства Maxim Integrated. Поэтому всё программное обеспечение, ранее разработанное для поддержки адаптеров DS9097U, также подходит для взаимодействия с любым из адаптеров Link. Но главное, что благодаря собственным интеллектуальным ресурсам адаптеры Link и LinkUSB обеспечивают льготный режим работы ведомых абонентов в составе проблемных 1-Wire-сетей, в условиях сложной помеховой обстановки. Адаптеры Link и LinkUSB многократно улучшают механизм активной подтяжки шины данных 1-Wire-магистрали, что позволяет действительно получать идеальные сигналы обмена при длинах кабеля до 300 метров и числе ведомых абонентов до 250 шт. Кроме того, использование процессором Link?адаптера специальных алгоритмов цифровой фильтрации многократно улучшает устойчивость обслуживаемой им 1-Wire-сети к электромагнитным помехам, шумам и отражениям сигналов.

Цифровые датчики температуры и относительной влажности и автономные регистраторы температуры и относительной влажности, а так же все модули расширения, подключаются к линии датчиков 1-wire прибора ГИГРОТЕРМОН параллельно, используя 3 провода: «DQ» (шина данных 1-wire), «GND» (общий) и «+5В» (питание). Однако для надежности необходимо использовать все контакты разъема 6P6C (RJ12). Внимание: важно, чтобы контакты «DQ» (1-wire) и «GND 1-wire» (контакты 3 и 4 на рис. ниже) были одной витой парой, например, зеленый и бело-зеленый. Внешний вид разъема 6Р6С, а также назначение контактов и рекомендуемая расцветка проводов см. рис. ниже.

Для надежности связи прибора с датчиками и достижения максимальной протяженности линии датчиков 1-wire цифровые датчики и модули расширения рекомендуется подключать по схеме «гирлянда»: кабель от прибора ГИГРОТЕРМОН должен подходить к первому датчику (или модулю расширения), от первого ко второму и т.п., чтобы все датчики и модули были на одной линии, без ответвлений. См. рис. ниже.

Рекомендуемая максимальная протяженность линии 1-wire при использовании кабеля «витая пара» категории 5Е – не более 100 метров. Если фактическая длина кабеля более 100 метров, рекомендуется разбить линию на две малые с использованием дополнительного прибора ГИГРОТЕРМОН. Для удобства подключения и монтажа, все модули расширения и цифровые датчики и адаптеры для цифровых автономных регистраторов имеют не менее 2-х разъемов 6P6C (RJ12) – вход/выход 1-wire.

Внешний вид платы цифрового датчика 1w-2/3

Внешний вид модуля расширения дискретных датчиков «1wio2»

Внешний вид платы модуля расширения унифицированных (аналоговых) сигналов «HIHx2»

Таблица 1. Результаты испытаний линии связи регистраторов температуры (и относительной влажности) на максимальную протяженность,
при которой наблюдается устойчивая связь регистраторов с прибором Гигротермон

Длина кабеля, м. Тип регистраторов температуры и влажности / наличие связи (да / нет)
Регистраторы температуры
DS1921G-F5, DS1921Z-F5
Регистраторы температуры и относительной влажности DS1923-F5, DS1922L-F5
350 да (с подтяжкой 5В)
нет (без подтяжки 5В)
300 да (с подтяжкой 5В)
нет (без подтяжки 5В)
250 да (с подтяжкой 5В) нет (с подтяжкой 5В)
нет (без подтяжки 5В) нет (без подтяжки 5В)
200 да (с подтяжкой 5В) да (с подтяжкой 5В)
нет (без подтяжки 5В) нет (без подтяжки 5В)
150 да (с подтяжкой 5В) да (с подтяжкой 5В)
да да (без подтяжки 5В)
100 да (с подтяжкой 5В) да (с подтяжкой 5В)
да да (без подтяжки 5В)
  • "да" - наличие устойчивой связи датчика с прибором Гигротермон
  • "нет" - отсутствие устойчивой связи датчика с прибором Гигротермон
  • "с подтяжкой" - использование схемы пассивной подтяжки сигнала +5В на конце линии. http://gigrotermon.ru/imag/shop.product_details/8/flypage.tpl/198.html

Таблица 2. Результаты испытаний линии связи комбинированных датчиков** 2RJ11-HIH5031E-DS18S20
на максимальную протяженность, при которой наблюдается устойчивая связь с прибором Гигротермон

Длина кабеля, м. Измеряемый параметр / наличие связи (да / нет)
Температура Относительная влажность
100 да (без подтяжки) да (без подтяжки)
125 да (с подтяжкой) да (с подтяжкой)
150 да (с подтяжкой) да (с подтяжкой)
175 да (с подтяжкой) да (с подтяжкой)
200 да (с подтяжкой) нет (с подтяжкой)
300 да (с подтяжкой) нет (с подтяжкой)

**) В испытаниях использовано 10 комплектов комбинированных (температура + влажность) датчиков 2RJ11-HIH5031E-DS18S20, подключенных одновременно в конце линии.

Данные получены в "идеальных" лабораторных условиях с использованием кабеля NIKOLAN NKL 4200A-GY F/UTP 4 пары кат.5e, 24 AWG. Поэтому, в реальных производственных условиях значения длин могут отличаться в меньшую сторону из-за присутствия электромагнитных помех или использования другого типа используемого кабеля.

Для одного из проектов по автоматизации потребовалось сделать устройство, которое является подчинённым 1-Wire устройством, принимает команды от мастера и выставляет на своих выходах значение аналогового сигнала в диапазоне от 0 до 10В.
Проанализировав линейку стандартных микросхем 1-Wire от Maxim, стало ясно, что нет микросхемы, которая позволит реализовать подобный функционал.
Потому было принято решение реализовывать 1-Wire slave на микроконтроллере. Надеюсь, данный материал будет интересен и полезен людям, которые делают «умный дом» своими руками, т.к. 1-Wire достаточно популярная шина в подобных проектах. В качестве камня был выбран МК Cortex M0+ ATSAMD20G16 от Atmel, но о реализации в коде расскажем во второй части. Забегая немного вперед, скажу что в третьей части цикла пойдет речь о реализации собственного семейства устройств для линуксовой библиотеки OWFS (One Wire File System). А сегодня расскажем о некоторых аппаратных решениях, к которым мы пришли в процессе разработки.

Речь в основном пойдет о том как подключить ногу микроконтроллера к 1-Wire шине с минимальным вредом для здоровья. Будем двигаться от простого к сложному.

Преобразование уровней


Самый простой вариант - двунаправленный преобразователь уровня на транзисторе. Для него потребуется где-то брать 5В со стороны шины 1-Wire.
Первый вариант - делать 5В на своем устройстве (помимо 3.3В) для «запитки» шины. Как следствие, усложнение схемотехники.
Второй вариант - прокладывать шину 1-Wire в три провода . Третьим проводом идёт линия питания +5В. Из проблем - лишний провод, просадка напряжения на длинном проводе.

Согласование уровней

Если очень не хочется использовать +5В можно разделить сигнальную линию на 2 составляющих (вход и выход)

Важно учесть, что при такой схеме линии со стороны контроллера получаются инверсными.
В качестве бонуса, разделение линии данных на 2 части позволяет несколько упростить дальнейшую отладку софта, т.к. позволяет видеть осциллографом отдельно выходящие от нас сигналы (линия 1-Wire Tx ), не смешанные с сигналами других устройств на шине.

Повышаем устойчивость

Для того что бы сделать прием данных по 1-Wire более уверенным необходимо сделать крутые фронты импульсов со стороны микроконтроллера. Для этого воспользуемся компаратором от TI LMV331 , который обеспечит более точный и резкий переход между логическими «0» и «1», а так же гистерезис 160mV. Еще заменим выходной би-полярный транзистор BC547 на полевой IRLML6346 и поставим защитный TVS диод ESD5Z6 на 6В.


Для данной схемы компаратор потребуется запитать от 5В. Где их можно взять было сказано выше.

Развязанный 1-Wire

Для обеспечения электрической развязки шины 1-Wire и внутренней электроники устройства воспользуемся изолированным транслятором уровней ADuM1201 , и изолированным DC/DC конвертор TES 1-1211 . Как и в предыдущем случае, линию данных 1-Wire делим на 2 линии: 1W_Rx и 1W_Tx.


DC/DC конвертор с 12 на 5 вольт взят для примера, можно использовать аналогичный 3.3/5.

Остальная схемотехника

Для полноты картины покажем схемотехнику подключения микроконтроллера, а так же выходных аналоговых каналов 0-10В.




Т.к. протокол 1-Wire требует наличие уникального адреса для каждого устройства на шине, на плату ставим 1-Wire UID от Maxim DS2411 . Будучи для неё мастером шины будем считывать её UID и использовать его в качестве собственного адреса. У DS2411 код семейства 0x01 (family code - старший байт UID’а). Мы же на сайте OWFS выберем незанятый код семейства для нашего нового устройства и будем подменять первый байт.

Как уже было сказано, во второй части приступим к программной реализации протокола 1-Wire Slave.

Разработчиком платформы 1-Wire является Dallas Semiconductor Corporation (US). В 2001 году она была приобретена гигантом мировой микроэлектроники фирмой Maxim Integrated Products (US). Платформа включает серию микросхем и устройств iButton на их основе, а также различные адаптеры, наборы для макетирования и программное обеспечение.

Производство микросхем и устройств iButton является исключительной прерогативой фирмы Maxim, их клонирование другими производителями политикой лицензирования не предусмотрено. В то же время сторонние фирмы разрабатывают и производят на основе микросхем данной платформы разнообразные модули для систем автоматизации, адаптеры, контроллеры, системы макетирования, а также ПО.

Рис.1. Компоненты платформы 1-Wire.

Платформа разрабатывалась с конца 80-х до конца 90-х годов и предназначалась для задач контактной идентификации объектов, в т.ч. с функциями измерения и регистрации температуры, влажности, параметров автономного электропитания, а также с функциями съема, хранения и переноса данных. Широко распространенным образцом такого рода применения является ключ-таблетка для домофона. Менее известным, но также широко распространенным является использование платформы 1-Wire для решения задач идентификации и регистрации параметров картриджей, материнских плат, биологических объектов, идентификации и защиты от несанкционированного доступа различных боксов, контейнеров и т.п. Суть данного целевого назначения и принципа действия отражена в термине «Touch Memory» (контактная память), который часто используют для упоминания устройств iButton. Подробную информацию о штатных областях применения и достоинствах платформы 1-Wire можно найти на следующих страницах сайта фирмы Maxim Integrated:

Несмотря на такое изначально узкоцелевое назначение, платформа 1-Wire по своим технико-экономическим характеристикам оказалась весьма подходящей для бюджетных решений определенных категорий АСУ ТП. Продвижение платформы в нишу автоматизации явилось предпосылкой ее использования в дальнейшем и в системах «умного» дома, в первую очередь в системах контроля микроклимата и метеоусловий, что обусловлено составом датчиков. Особо по вкусу платформа пришлась мелким частным компаниям и разного рода умельцам, разработавшим для нее ряд программных средств, контроллеров, периферийных модулей, а также создавшим ряд проектов домашней автоматизации.

Оценки доли платформы на рынке систем домашней автоматизации отсутствуют.

Базовыми решениями, на которых основана платформа, являются следующие:

A. Двухпроводный интерфейс.

Вместе с тем в устройствах, имеющих функцию автономной регистрации данных, т.е. без подключения к магистрали, предусматривается внутренний источник питания (литиевая батарейка), а питание устройств с повышенным потреблением производится от внешнего источника по отдельной линии.

Ограничение магистрали всего двумя линиями позволяет обеспечить гарантированный контакт внешних цепей устройства iButton с цепями контактного устройства магистрали «легким движением руки», т.к. для этого требуется механическое сопряжение всего двух пар элементов. Именно в этом, собственно говоря, и заключается главное достоинство «двухпроводности» применительно к первоначальным задачам платформы 1-Wire.

B. Индикация подключения в горячем режиме.

Протокол 1-Wire предусматривает выдачу устройством, поключаемым к магистрали в горячем режиме, импульса, оповещающего о появлении на магистрали нового устройства. Необходимость такого оповещения также дикутется особенностями целевого назначения платформы, поскольку обмен с устройством iButton должен инициироваться в момент его подключения к магистрали.

C. Уникальный идентификатор устройства

Каждая микросхема 1-Wire содержит уникальный 64-битный код, записываемый на этапе производства. Данный код позволяет индивидуализировать все выпускаемые устройства 1-Wire, для чего производитель гарантирует отсутствие одинаковых кодов (аналогично MAC-адресам сетевых адаптеров). При подключении к магистрали данный код считывается контроллером и используется для идентификации связанного с этим устройством объекта, а также для определения типа устройства. При подключении к магистрали нескольких устройств их коды могут использоваться в качестве их адресов, что позволяет строить технологические сети, получившие название MicroLAN.

Замечание. Для задач автоматизированного управления, к которым, в том числе, относятся и задачи «умного дома», данные решения не дают каких-либо преимуществ. Так, нет ощутимой разницы при использовании в современном интерьере двухпроводного и, например, четырехпроводного кабеля, тем более, что использование исполнительных устройств все равно потребует отдельной линии питания. Также не актуальна для домашней автоматики возможность подключения устройства в «горячем» режиме, если только это не ключ электронного замка. Использование же в качестве адреса устройства его идентификатора вместо установки фиксированного, регламентированного проектом, вообще сопряжено с определенными неудобствами наладки и ремонта сети, хотя разработчик и предлагает соответствующие алгоритмы самонастройки и адаптации, а также возможность установки с помощью внешних перемычек для ряда устройств дополнительного 4-х битного локального адреса. Пригодность платформы для отдельных ниш автоматизации вытекает из ее дешевизны, простоты применения, наличия в составе ряда востребованных датчиков, устройств сопряжения со стандартными интерфейсами, драйверов для распространенных операционных систем, а также наличием возможности расширения функционала за счет применения элементной базы общего назначения.

Сеть на базе протокола 1-Wire имеет централизованную архитектуру. Информационный обмен происходит под управлением центрального контроллера - «мастера», остальные сетевые устройства имеют статус «слэйв» (рис.3). В качестве контроллера сети может использоваться любое программируемое устройство, имеющее внешний интерфейс. Для согласования контроллеров с магистралью 1-Wire в составе программно-технических средств платформы имеются адаптеры и драйверы для проводных последовательных интерфейсов RS-232, RS-485, I2C, SPI, Ethernet, для параллельного интерфейса LPT, а также для Wi-Fi.

Рис.3. Конфигурация сети MicroLAN на базе протокола 1-Wire

Топология сети может иметь как линейную, так и ветвящуюся древовидную структуру. Основные параметры интерфейса 1-Wire следующие:

  • максимальная длина магистрали при использовании витой пары - до 300 м;
  • максимальное количество абонентов на магистрали максимальной длины - до 250;
  • скорость обмена по магистрали максимальной длины - до 16,3 кбит/c;

Для магистрали рекомендуется ипользовать стандартную витую телефонную пару CAT5. В случае использования стандартного телефонного провода с двумя парами вторую пару использовать для других целей не рекомендуется во избежание увеличения емкости линии, т.е. в случае подачи внешнего питания на устройства желателен отдельный кабель.

Обмен данными по магистрали включает три фазы (рис.4):

  • фазу сброса, включающую импульс сброса от контроллера и ответный импульс подтверждения присутствия от абонента (абонентов);
  • фазу выборки устройства, включающую команду его выборки (по коду, без кода, групповую, поиска) и его код, если командой он предусмотрен;
  • фазу записи/чтения данных, включающую код команды и данные.

Рис.4. Циклограмма обмена данными

Логика всех устройств тактируется отрицательным фронтом сигналов контроллера как в режиме записи, так и в режиме чтения. Биты кодируются длительностью положительного импульса: «1» передается длинным импульсом, а «0» - коротким. В режиме записи все импульсы данных формируются контроллером. В режиме чтения контроллер формирует последовательность единиц, а абонент накладывает на них свою маску нулей (рис.5).

Рис.5. Тактирование и кодирование на физическом уровне

Более подробные сведения об архитектуре магистрали 1-Wire приведены в следующих официальных документах фирмы Maxim:

Архитектура ЗУ и регистров периферийных устройств платформы организована таким образом, что совокупность всех сетевых устройств может быть представлена как единая файловая система, что позволяет работать с сетью как с интегрированным носителем данных. Описание ее структуры приведено в AN114 1-Wire File Structure .

Номенклатура микросхем платформы 1-Wire и устройств iButton включает как простые носители кода идентификации, так и носители кода идентификации с дополнительными функциями, в т.ч.

  • с функциями различных типов ЗУ - Memory EPROM, EEPROM, ROM, NV SRAM ;
  • с функциями измерения температуры - Temperature Sensors ;
  • с функциями мониторинга, защиты и конфигурирования элементов электропитания - Battery Monitors, Protectors, and Selectors и Battery ID and Authentication ;
  • с функциями хронирования - Timekeeping & Real-Time Clocks ,
а также интерфейсные микросхемы для сопряжения контроллеров с магистралью 1-Wire - 1-Wire Interface Products .

Вся схемотехника, реализующая архитектуру, уже заложена в микросхемах платформы. При разработке периферийных устройств разработчику остается только добавить обвязку для сопряжения с датчиками, актюаторами и устройствами индикации, элементы защиты внешних цепей и, если потребуется, элементы внешнего электропитания. При разработке интерфейсных адаптеров необходима, соответственно, обвязка для сопряжения микросхем - драйверов магистрали с интерфейсом контроллера сети. На рис. 6 в качестве примера приведен фрагмент схемы модуля дискретного ввода-вывода фирмы ЭлИн.

Рис.6. Фрагмент схемы модуля дискретного ввода-вывода фирмы ЭлИн

На базе комплектующих 1-Wire, выпускаемых фирмой Maxim, производится достаточно большое разнообразие конструктивно и функционально законченных устройств для систем автоматизации, в т.ч. для «умного» дома. Такие устройства включают различные адаптеры и серверы магистрали, модули ввода-вывода дискретных и аналоговых сигналов, датчики, кабели и пр. Номенклатура, характеристики и цены таких устройств приведены на сайтах их производителей, к числу наиболее известных из которых относятся:

Наиболее развитую номенклатуру OEM-устройств, включающую в т.ч. и управляемые розетки для коммутации электропитания, предлагает НТЛ ЭлИн. За рубежом наибольшей популярностью пользуются модули фирмы Embedded Data Systems. Однако в целом число OEM-производителей невелико, они не относятся к категории «гигантов» индустрии средств автоматизации и, кроме того, в значительной степени ориентированы на рынок домашних умельцев.

Рис.7. Примеры OEM-модулей 1-Wire

Фирма Maxim Integrated предоставляет для программирования систем на базе 1-Wire библиотеки API и SDK для широкого ряда платформ - персональных компьютеров с ОС Windows/Linux/MacOS, мобильных устройств, микроконтроллеров, .NET и JAVA. Их общее описание приведено в AN155 , а описание конкретных пакетов со ссылками на скачивание дистрибутивов и документации приведено в следующих документах:

Предлагается также программный cканер сети OneWire Viewer , позволяющий находить и идентифицировать подключенные к сети устройства и отображать полный перечень их параметров и данных.

Из сторонних разработок наибольший интерес представляют следующие:

Существует также большое число специализированных программ, разрабатываемых под узкие задачи (см., например, для модулей НТЛ ЭлИн).



Новое на сайте

>

Самое популярное