Домой Стройматериалы Какие бывают разновидности грунтов? Классификация грунтов, особенности и тонкости. Структурно-неустойчивые сложные грунты Описание цвета грунтов в геологии какой стандарт

Какие бывают разновидности грунтов? Классификация грунтов, особенности и тонкости. Структурно-неустойчивые сложные грунты Описание цвета грунтов в геологии какой стандарт

Основанием любого здания или сооружения является фундамент и грунт под ним, которые принимают на себя нагрузку от веса строения. Естественное основание состоит из природного грунта местности, на котором без дополнительных укрепительных работ возводят фундамент и затем здание. От конкретных характеристик грунта и климатических условий местности зависит выбор конструкции фундамента и строительные возможности данного земельного участка. Для использования в качестве естественного строительного основания подходят только прочные грунты с низкими показателями сжимаемости и пучинистости. Для определения состава, качеств и эксплуатационных возможностей грунта необходимо определить его тип и выполнять производство земляных работ в соответствии с этими данными.

Поэтому прежде чем заказывать услуги спецтехники и начинать благоустройство земельного участка, необходимо определить тип грунта и оценить его эксплуатационные возможности для строительства.

Скальные грунты

Самые надежные, но и самые редкие на территории Северо-Западного региона грунты. Скальная основа отличается прочностью, устойчивостью к размыву и деформации, долговечностью и безопасностью для строительства. Залегают такие грунты сплошным массивом, поэтому строить фундамент можно без дополнительного заглубления, сразу на поверхности грунтовой основы.

Крупнообломочные грунты

Крупнообломочный грунт состоит из несцементированных частиц, среди которых преобладает песок (от 50% состава) и крупные каменные породы более 2мм. Грунты крупнообломочного состава практически не деформируются под нагрузкой, поэтому фундамент можно заглублять всего на 0,5 - 1 м. В зависимости от размера каменных частиц такие грунты подразделяются на два типа:

  • щебенистый (галечниковый) грунт: в составе грунта преобладают крупные компоненты размером более 10 мм (окатанная галька и/или остроугольный щебень), между которыми присутствует мелкое заполнение песком или другим инертным материалом природного происхождения;
  • дресвяный (гравийный) грунт: в составе грунта преобладают крупные компоненты размером более 2 мм (окатанный гравий и/или остроугольный дресва с зернами 5-12 мм), между которыми присутствует мелкое заполнение песком или другим инертным материалом природного происхождения.

Песчаные грунты

К песчаным грунтам относятся почвы, в составе которых преобладают частицы размером до 2мм (от 50%). Пески отличаются сыпучестью в сухом состоянии, отсутствием пластичности во влажном состоянии, способностью уплотняться и проседать под нагрузкой. В зависимости от коэффициента пористости пески делятся на плотные, среднеплотные и рыхлые. В зависимости от коэффициента влажности пески делятся на насыщенные (более 80% пор грунта заполнено водой), очень влажные (50-80%) и маловлажные (до 50%).

Важным критерием прочность песчаного грунта является размер преобладающих компонентов состава - чем больше размер частиц, тем прочнее грунт: мелкий песок теряет утрачивает несущую способность при увлажнении и быстро промерзают в холодное время года, тогда как крупные и среднекрупные пески почти не реагируют на нагрузку и увлажнение. По размеру и составу частиц песчаный грунт делится на несколько видов:

  • пылеватый песок - песок с преобладанием частиц меньше 0,1мм (более 75%);
  • мелкий песок - песок с преобладанием частиц крупнее 0,1мм (более 75%);
  • средний песок - в его составе преобладают частицы крупнее 0,25 мм (от 50%);
  • крупный песок - более 50% состава грунта занимают частицы крупнее 0,5 мм;
  • гравелистый песок - на 25% и более состоит из частиц крупнее 2 мм.

Суглинки и супесь

Группа промежуточных грунтов между песком и глиной. Такие грунты не могут использоваться в качестве естественного основания под строительство, так как они недостаточно прочны и неустойчивы к нагрузке. В зависимости от состава этот тип грунта делится на суглинки (10-30% глины) и супеси (менее 10% глины).

  • Суглинки - это хрупкий в сухом состоянии, немного липкий и пластичный во влажном состоянии грунт в виде комьев и кусков с видимыми песчинками в составе.
  • Супесь - хрупкий в сухом состоянии и непластичный во влажном состоянии комкующийся грунт, который легко крошится, рассыпается, раздавливается и рвется даже при легком давлении.

Глинистые грунты

Связанные грунты с преобладанием глины в составе без видимых песчинок. В сухом состоянии твердые, во влажном - липкие, пластичные и вязкие. При замерзании глина вспучивается, а при давлении деформируется, поэтому при строительстве на глиняных основаниях необходимо строить заглубленный фундамент на всю глубину промерзания грунта.

Лессы и лессовидные грунты

Прочные и устойчивые в сухом состоянии, но легко деформируемые при увлажнении грунты, требующие предварительной подготовки перед строительством.

Торф

Торфяные грунты состоят из глинистых и песчаных частиц с примесью растительных остатков органического перегноя. Влажный торф легко сжимается под нагрузкой, в его составе нередко развивается осадок с агрессивным к строительным материалам составом, поэтому строить на таких почвах без предварительной подготовки основания категорически запрещено.

Классификация грунтов

Классификация грунтов - деление грунтов по различным признакам. По природе различают: - несвязные грунты: галька, щебень, гравий, песок; - связные грунты: супесь, суглинок, глина; и - скалу.

Грунты, обладающие только силами сухого трения, называются несвязными. К ним относятся крупнообломочные (гравелисто-галечниковые) и песчаные грунты. Грунты, характеризующиеся наличием сил сцепления между частицами, носят название связных. К таким группам относятся глины и суглинки. Промежуточное положение занимают так называемые малосвязные грунты. Наряду с силами трения они обладают слабо выраженными силами сцепления. К этой группе грунтов относятся супеси. Гранулометрический и химико-минералогический состав грунта, а также количественное соотношение в нем твердой и жидкой фаз обусловливают его физико-механические свойства, которые, в свою очередь, влияют на эффективность разработки и выбор оптимальных технологических параметров применяемых средств механизации.

Несвязные грунты

Несвязные породы - песок, гравий и другие рыхлые породы, у которых отсутствуют связи между частицами.

Таблица 1: Параметры и классификация грунтов

Этот коэффициент представляет собой отношение объема разрыхленного грунта к объему грунта в естественном состоянии и составляет, например, для песчаных-1,08-1,17, суглинистых- 1,14-1,28 и глинистых грунтов 1,24-1,3.

Уложенный в насыпь разрыхленный грунт под влиянием массы вышележащих слоев грунта или механического уплотнения, движения транспорта, смачивания дождем и т. д. уплотняется. Однако грунт все же не занимает того объема, который он занимал до разработки, сохраняя остаточное разрыхление, показателем которого является коэффициент остаточного разрыхления грунта - Ко.р, значение которого для песчаных грунтов находится в пределах 1,01-1,025, суглинистых - 1,015-1,05 и глинистых- 1,04-1,09.

рунт при разработке разрыхляется и увеличивается в объеме. Объем выемки в плотном грунте (в зависимости от грунта) будет меньше объема перевозимого грунта. Это явление, называемое первоначальным разрыхлением грунта, характеризуется коэффициентом первоначального рыхления Кр, который представляет собой отношение объема разрыхленного грунта к объему грунта в естественном состоянии.
Коэффициенты разрыхляемости некоторых горных пород имеют следующие значения.
Песок, супесь. . . . . . . . . . . . . . . . . . . . . . . . . . . . .1,1-1,2
Растительный грунт, глина, суглинок, гравий 1,2-1,3
Полускальные породы. . . . . . . . . . . . . . . . . . . . .1,3-1,4
Скальные породы:
средней прочности. . . . . . . . . . . . . . . . . 1,4-1,6
прочные. . . . . . . . . . . . . . . . . . . . . . . . . . . 1,6-1,8
очень прочные. . . . . . . . . . . . . . . . . . . . . 1,8-2,0
Объем работ по выемке котлованов, отрывке траншей, устройству насыпи, обратной засыпки и т.п. подсчитывается в м3 путем обмера грунта в плотном теле . Т.е. тот грунт что разрабатывается то же количество и засыпается, за минусом объема фундаментов. После чего грунт уплотняется и снова принимает так называемый объем в плотном теле

Грунты и их строительные свойства

Грунт - любая горная порода или почва, представляющие собой многокомпонентную систему, изменяющуюся во времени, и используемые как основание, среда или материал для возведения зданий и инженерных сооружений.

Структура грунта - это особенности строения грунта, обусловленные размером и формой частиц, характером их поверхности, количественным соотношением слагающих элементов (минеральных частиц или агрегатов частиц) и характером их взаимодействия друг с другом

Рыхлые грунты - наиболее распространенные строительные материалы. По своему механическому составу эти грунты подразделяются на несвязные и связные.

Связный грунт - грунт, особенность строения которого обусловлена количественным соотношением частиц, обеспечивающих его целостность. К связным грунтам относятся: супесь, суглинок, глина.

Несвязный грунт - грунт, состоящий из частиц размерами от 0,05 до 200 мм. К несвязным грунтам относятся: галька, щебень, гравий, дресва, песок, пыль.

Твердая фаза нескальных грунтов состоит из частиц различной величины и минералогического состава. Частицы грунта в зависимости от их размеров называют: > 200 мм - валуны, 40-200 мм - галька, 2 - 40 гравий, 0,05 - 2 песок, < 0,005 - глина.

Угол внутреннего трения грунта - угол наклона прямой зависимости сопротивления срезу грунта от вертикальной нагрузки к оси абсцисс.
В строительстве классифицируют грунты в зависимости от содержания в них глинистых частиц.
Таблица 3.1 - Основные виды песчано-глинистых грунтов

К наиболее важным показателям грунтов кроме механического состава относятся: плотность, пористость, влажность, внутреннее трение и сцепление, пластичность, разрыхляемость, влажность, водопроницаемость и др.

Плотность - это отношение массы тела к занимаемому объему.

Применительно к грунтам различают:

- плотность частиц грунта - отношение массы сухого грунта к объему только твердой его части, исключая объем пор (от 2.35 до 3.3 т/м3, чаще 2.6 - 2.7 т/м3);

- плотность грунта - отношение массы грунта, включая массу воды в его порах, к занимаемому объему вместе с порами (1.5…2.0 т/м3);

В зависимости от содержания глинистых частиц глины, суглинки и супеси могут быть тяжелыми, средними или легкими.

Пески в зависимости от крупности частиц бывают крупно-, средне- или мелкозернистые.
При разработке грунта его частицы отделяются друг от друга и в последующем занимают большой объем.

Увеличение объема грунта в результате разработки определяется с помощью коэффициента разрыхления. Коэффициент разрыхления Кр - это отношение объема грунта в разрыхленном Vр состоянии к объему который занимает тот же грунт до разрыхления Vе.

Степень разрыхления зависит от механического состава и влажности (табл. 3.2)

Таблица 3.2- Коэффициенты разрыхления основных грунтов

Разрыхляемость грунтов учитывают:

При определении объемов и размеров насыпей при укладке грунта без уплотнения;

При определении объема грунта в состоянии естественной плотности по объему занимаемого рыхлым грунтом;

При определении объема грунта в состоянии его естественной плотности в ковшах землеройных машин.

Для определении толщины слоя подсыпок при укладке грунта без уплотнения.

Кор – коэффициент остаточного разрыхления.

KВ - коэффициент использования рабочего времени машины, представляющий собой отношение времени чистой работы ко всему затраченому. Принимается равным 0,85 - 0,9;
KР - коэффициент разрыхления грунта, зависящий от вида грунта и его состояния;

Таблица 9.2 Коэффициенты разрыхления основных грунтов

Возможно изучить характеристики грунта без лаборатории?

1. Введение

Важнейшим этапом проектирования фундамента являются инженерно-геологические изыскания которые позволяют определить во всех подробностях какие характеристики у грунтов, залегающих под будущим фундаментом. Эти данные позволят запроектировать максимально дешевый и экономичный фундамент с сохранением необходимых показателей надежности.

[Недостаток сведений о грунтах при проектировании фундамента можно перекрыть только большими запасами по прочности и, как следствие, перерасходом финансов, но и это не дает гарантии надежности]

Всегда, прежде чем отказаться от геологических изысканий, оцените риски от неверного принятия решения по фундаменту и сравните их с экономией на отказе от изысканий. В моем регионе бурение одной скважины и лабораторные исследования образцов грунта обойдутся в 30-40 тысяч рублей (с выдачей официального отчета о инженерно-геологических изысканиях).

Фото. Образцы грунта ненарушенной структуры (монолиты) отобранные при инженерно-геологических изысканиях

Если на заказ изысканий в специализированной организации нет денег, и вы приняли решение самостоятельно запроектировать фундаменты, то необходимо определить характеристики грунтов хотя бы примерно, по визуальным признакам. Об этом читайте в ниже в данной статье.

2. Классификация грунтов

Для классификации грунтов полезно пользоваться нормативным документом – «Грунты. Классификация» — в нем указано все что необходимо знать о классификации грунтов строителю.

Самые крупные классы грунтов:

  • Скальные грунты - грунты с жесткими структурными связями (кристаллизационными и цементационными)
  • Дисперсные грунты - грунты с физическими, физико-химическими или механическими структурными связями.
  • Мерзлые грунты - грунты с криогенными структурными связями.
  • Техногенные грунты - грунты с различными структурными связями, образованными в результате деятельности человека.
Группы и подгруппы нескальных грунтов Характеристика
Осадочные нецементированные:
крупнообломочные Нецементированные грунты, соде­ржащие более 50 % по массе обло­мков кристаллических или осадочных пород с размерами частиц более 2 мм
песчаные Сыпучие в сухом состоянии грунты, содержащие менее 50 % по мас­се частиц крупнее 2 мм и не обладающие свойством пластичности (грунт не раскатывается в шнур диаметром 3 мм или число пластичности его J p
пылевато-глинистые Связные грунты, для которых число пластичности J p ≥1
биогенные Грунты с относительным содержанием органического вещества I от > > 0,1 (озерные, болотные, озерно-болотные, аллювиально-болотные)
Почвенно-растительные Природные образования, слагающие поверхностный слой земной коры и обладающие плодородием
Искусственные
Уплотненные в природном залегании, насыпные, намывные Преобразованные различными спо­собами или перемещенные грунты природного происхождения и отходы производственной и хозяйственной деятельности человека

Скальные грунты, пожалуй, любой, даже абсолютно неподготовленный, человек сможет отличить от всех остальных типов грунта. На скальных грунтах из-за их высокой прочности проблем с фундаментом, с точки зрения несущей способности основания, не возникает – они часто сами могут служить фундаментом здания или сооружения.

Фото. Скальный грунт

Мерзлые грунты схожи по прочности со скальными и бывают сезонномерзлыми или многолетнемерзлыми. Сезонномерзлые грунты весной превращаются в талые и как основания фундаментов не могут использоваться.

Многолетнемерзлые грунты (ММГ) - это специфические грунтовые условия, проектирование фундаментов на которых одна из самых сложных задач и заниматься этим без помощи профессионалов не рекомендуется. В некоторой степени вопросы проектирования фундаментов на ММГ затронуты в соответствующей статье .

Техногенные грунты (свалки строительного или бытового мусора, грунтовые отвалы, отвалы отходов производств, золошлаковые насыпи) – так же очень специфические условия строительства. Проектирования фундаментов, опирающихся на такие грунты — задача для профессионалов и требует большой осторожности. Строить частный дом на таких грунтах обычно не приходится.

Фото. Техногенный грунт

Биогенные грунты и почвенно-растительный слой не следует использовать как основание для фундамента т.к. помимо их очень низкой исходной несущей способности, органическая составляющая со временем разлагается, сильно уменьшаясь в объеме. Это вызывает большие неравномерные осадки фундамента и увеличивает среднюю осадку фундамента. Биогенные грунты как правило заменяют на другие более стабильные и прочные привозные грунты.

Развернутая классификация грунтов, если она вам интересна, будет рассмотрена в отдельной статье , а сейчас остановимся подробно на дисперсных грунтах , которые в подавляющем большинстве случаев служат основанием для фундаментов зданий и сооружений.

Дисперсные грунты делятся на два больших типа:

  • Связные – глинистые грунты: глина, суглинок, супесь (частицы грунта связаны водноколлоидными и механическими структурными связями);
  • Несвязные (сыпучие) – пески и крупнообломочные грунты.

Крупнообломочные грунты состоят в основном из очень крупных каменных частиц (от 2 до 200 мм и более). Если пространство между каменными частицами крупнообломочного грунта заполнено песком или глинистым грунтом, и такого заполнителя более 30% по массе (для песчаного заполнителя более 40%), то характеристики грунта определяются только характеристиками заполнителя, без учета каменных включений.

[Частицы крупнообломочных грунтов одинакового размера могут называться по-разному: если их грани окатаны, округлые — то их называют валуны, галька, гравий; если не окатаны (заостренные рубленные грани), то частицы называют глыбы, щебень или дресва.]

По гранулометрическому составу (см. ГОСТ 12536) крупнообломочные грунты и пески подразделяют на разновидности в соответствии с таблицей:

Разновидность крупнообломочных грунтов и песков Размер частиц d, мм Содержание частиц, % по массе
Крупнообломочные:
- валунный (при преобладании неокатанных частиц - глыбовый) > 200 > 50
- галечниковый (при неокатанных гранях - щебенистый) > 10 > 50
- гравийный (при неокатанных гранях - дресвяный) > 2 > 50
Пески:
- гравелистый > 2 > 25
- крупный > 0,50 > 50
- средней крупности > 0,25 > 50
- мелкий > 0,10 ≥ 75
- пылеватый > 0,10

По числу пластичности I p и содержанию песчаных частиц глинистые грунты подразделяют на разновидности в соответствии с таблицей:

Разновидность глинистых
грунтов
Число пластичности J p , % Содержание песчаных
частиц (2 - 0,05 мм),
% по массе
Супесь:
- песчанистая 1 ≤ J p ≤ 7 ≥ 50
- пылеватая 1 ≤ J p ≤ 7
Суглинок:
- легкий песчанистый 7 ≥ 40
- легкий пылеватый 7
- тяжелый песчанистый 12 ≥40
- тяжелый пылеватый 12
Глина:
- легкая песчанистая 17 ≥ 40
- легкая пылеватая 17
- тяжелая J p >27 Не регламентируется

[Число пластичности I p – разность влажностей, соответствующая двум состояниям грунта: на границе текучести W L и на границе раскатывания W p . Простыми словами I p это значение диапазона влажности в котором грунт является пластичным (может быть раскатан в шнур диаметром 3 мм). Чем больше значение I p тем сильнее связи между частицами, для несвязных грунтов (песков) I p <1%.]

По мере увеличения влажности от сухого до водонасыщенного глинистые грунты проходят три состояния: твердое, пластичное и текучее.

По показателю текучести I L (показателю консистенции ) глинистые грунты подразделяют на разновидности в соответствии с таблицей:

Разновидность глинистых грунтов Показатель текучести J L , д. е.
Супесь:
- твердая J L
- пластичная 0 ≤ J L ≤ 1,00
- текучая J L > 1,00
Суглинки и глины:
- твердые J L
- полутвердые 0 ≤ J L ≤ 0,25
- тугопластичные 0,25
- мягкопластичные 0,50
- текучепластичные 0,75
- текучие J L > 1,00

По деформируемости дисперсные грунты подразделяют на разновидности в соответствии с таблицей:

3. Основные характеристики дисперсных грунтов для проектирования фундамента

Чтобы сказать, что фундамент выдерживает нагрузки, передаваемые на него, нужно чтобы выполнялись 3 условия:

  • Давление под подошвой фундамента не превышает расчетного сопротивления грунта (проверка устойчивости основания) – проверяются среднее давление и максимальные давления на краю и под углами фундамента;
  • Средняя осадка фундамента под нагрузкой не превышает допустимых значений (расчет по деформациям);
  • Неравномерные осадки фундамента так же в пределах допусков (расчет по деформациям).

Для проверки устойчивости основания необходимо вычислить расчетное сопротивление R, а для этого в свою очередь нужны следующие характеристики:

  • тип грунта,
  • крупность для песка или показатель текучести I L для глинстого грунта,
  • угол внутреннего трения грунта φ ,
  • удельное сцепление с ,
  • объемный вес грунта γ .

[Возможно для предварительных расчетов фундаментов использование табличных значений расчетного сопротивление грунта R 0 , определяемых по коэффициенту пористости и типу/консистенции глинистого грунта или типу по крупности песчаного грунта]

Для расчета по деформации (расчеты осадок) нужны дополнительно: модуль деформации грунта Е .

Попытаемся определить все эти характеристики без обащения к помощи геологов и лаборатории.

Последовательность расчетов столбчатых и ленточных фундаментов на естественном (не свайном) основании подробно описана здесь . Там же можно посмотреть допускаемые осадки, крены и неравномерные деформации фундаментов по нормативной документации.

Кроме того, необходимо будет собрать нагрузки на фундаменты — в этом вам поможет эта статья .

4. Какие характеристики грунта можно и нужно определить без лаборатории?

Итак, если вас интересует как определить характеристики грунта без лаборатории, то речь скорее всего идет о строительстве дачи или небольшого частного дома. Но все равно есть возможность принять более-менее правильные решения по фундаменту.

Для этого нам нужно определить для грунта под подошвой будущего фундамента:

  • Тип грунта (крупнообломочный, песок, супесь, суглинок или глина);
  • Если грунт оказался глинистым (глинистый заполнитель в крупнообломочных грунтах), то определим для него: подтип грунта (глина, суглинок или супесь), коэффициент пористости e и показатель текучести I L ;
  • Если грунт оказался песчаным, то определим для него показатель крупности (гравелистый, крупный, средний, мелкий или пылеватый) и коэффициент пористости e .

План у нас такой: определив вышеперечисленные показатели грунта мы сможем по таблицам « » получить табличные физико-механические характеристики грунта (φ, с ), включая его модуль деформации Е , а также предварительно посмотреть табличное расчетное сопротивление грунта основания R 0 . А это позволит нам выполнить все необходимые расчеты по фундаменты.

И хотя результат будет примерным, все же это лучше, чем строить наугад!

[Обратите внимание! Характеристики грунта, связанные с влажностью, такие как показатель текуческти I L или степень влажности Sr, определяют для природного состояния грунта, но эти показатели меняются при изменении влажности — например, при замачивании. Глинистый грунт, твердый в природном состоянии, может превратиться в жидкую грязь (I L > 1) при водонасыщении из-за подъема грунтовых вод или прорыва коммуникаций]

Если у Вас на участке оказались крупнообломочные грунты (более половины массы грунта - это камешки размером от 2 до 200 мм в поперечнике) то радуйтесь – лучшего основания для фундамента не найти (разве что лучше будут скальные грунты , но они создадут очень много проблем при необходимости откопать какой-либо котлован). Правда необходимо понять какой заполнитель между крупнообломочными частицами и сколько его:

  • если заполнитель глинистый и его более 30% (40% для песчаного заполнителя), то грунт следует рассматривать как глинистый (или песчаный соответственно) и определять все характеристики по заполнителю;
  • если заполнитель глинистый и его менее 30% то нужно определить для него показатель текучести I L ;

5. Отбор образцов грунта

Для начала важно правильно выбрать глубину заложения фундамента – это будет либо глубина заложения ниже расчетной глубины промерзания грунта, либо малозаглубленный фундамент который заранее обречен на перекосы от пучения и приспособлен к этому. Вопрос выбора глубины заложения фундамента подробно расписан в этой статье .

После того как с глубиной заложения фундамента определились нужно сделать шурф или котлован (вертикальная горная выработка квадратного, круглого или прямоугольного сечения, небольшой глубины)

Фото. Пример шурфа/котлована для отбора образцов грунта

или проще говоря выкопать яму на глубину 0,5-1,5 метра больше чем глубина заложения будущего фундамента (копать можно с помощью дешевой рабочей силы). Размеры шурфа в плане можно делать минимальными, такими чтобы только можно было работать лопатой а стенки вертикальными (это безопасно только при глубине не более 2 м, дальше смотрите по обстоятельствам) или ступенчатыми – ступенчато уменьшая шурф с глубиной.

После откопки шурфа на его стенках будут видны слои грунта и можно будет определить их толщины. Но больше всего нас интересует грунт на глубине, равной глубине заложения фундамента и чуть ниже него – берем оттуда образцы грунта, если возможно ненарушенной структуры (не разрыхляя его).

Образцы грунта отбирать следует на глубине, равной глубине заложения фундамента и далее с шагом 20-50 см по глубине отберите еще несколько образцов. Минимальное количество образцов – 3 шт. Масса образцов нарушенной структуры (согласно ГОСТ 12071-2014):

  • 1,5-2,0 кг — для глинистых грунтов;
  • 2,0-3,0 кг — для песков;
  • 3,0-5,0 кг — для крупнообломочных грунтов.

Монолиты (образцы ненарушенной структуры) связных (глинистых) грунтов Обычно отбирают в виде куба со стороной 10-20 см при помощи ножа, лопаты и т.д. Монолиты из песчаных грунтов отбирают в тонкостенные стальные трубы диаметром 100-200 мм. Погружение трубы осуществляется путем надевания ее без больших усилий на столбик грунта, подрезываемого с краев внизу трубы.

Так же очень важно знать есть ли на этих глубинах грунтовые воды. Грунтовые воды появляются не сразу – необходимо выдержать паузу 30-60 минут. Если грунтовая вода появилась необходимо точно замерить глубину от дневной поверхности земли до зеркала воды.

Фото. Грунтовая вода в шурфе

6. Определяем характеристики дисперсного грунта самостоятельно без лаборатории

После отбора образцов (проб) грунта с ними придется повозиться — необходимо выполнить следующие манипуляции и эксперименты:

  1. Взять немного грунта из образца и изучив его визуально (можно воспользоваться лупой) и на ощупь (растирая в ладонях) предварительно отнести его либо к песчаным либо к глинистым пользуясь таблицей ниже;
  2. Постепенно увлажнить образец до пластичного состояния (если же грунт водонасыщен и похож на жидкую грязь нужно его немного подсушить) уточнить тип грунта по методу скатывания в шнур (последний столбец таблицы):
Вид грунта Растирание на ладони Визуальные признаки Пластичность (скатывание в шнур)
Глина При растирании в сыром состоянии песчаных частиц не чувствуется. Комочки раздавливаются с трудом. Во влажном состоянии сильно липнет Однородный тонкий порошок, частиц песка практически нет Раскатывается в жгут, жгут без труда свертывается в кольцо. При сдавливании шара образуется лепешка не трескаясь по краям
Суглинок Песчаные частицы при растирании присутствуют, но ощущаются мало. Комочки раздавливаются легче Преобладают тонкие глинистые частицы мелких песчаных частиц 15 – 30% При раскатывании получается жгут, при свертывании в кольцо жгут распадается на части. При сдавливании шара образуется лепешка с трещинами по краям
Супесь Преобладают мелкие песчаные частицы, для пылеватой супеси может появится впечатление сухой муки. Комочки раздавливаются легко Преобладают мелкие частицы песка с небольшой примесью глинистых частиц При попытке раскатывания жгут распадается на мелкие кусочки. Свернуть жгут в кольцо невозможно. В шар скатывается но при сдавливании - рассыпается
Песок Отчетливо ощущаются отдельные песчинки. Комочки практически не образует Состоит почти полностью из частиц песка В жгут и шар не скатывается – рассыпается на мелкие частицы

[Пылеватые частицы – это частицы размером 0,05…0,001 мм, глинистые – размером менее 0,001 мм, песчаные частицы – размером более 0,05 до 2 мм.]

Далее если вы определили, что грунт является песком необходимо определить его зерновой состав. Гравелистый песок или крупнообломочный грунт вы скорее всего определите сразу по внешнему виду и наличию крупных камней.

Фото. Песчаный грунт

Проверим грансостав песка. Воспользуемся ГОСТ 8735-88 «Песок для строительных работ. Методы испытаний». Для этого пробу грунта массой 2 кг полностью высушивают (по ГОСТ в сушильном шкафу, но мы сушим в помещении при комнатной температуре).

Нам понадобятся стандартные сита с отверстиями размером 0.5; 0.25 и 0.1 мм (сита № 063; 0315; 016) и как можно более точные весы (можно кухонные, лучше лабораторные).

Лабораторные сита

Порядок действий:

  1. Взвешиваем исходный образец грунта – должно быть не менее 2 кг. Фиксируем показания.
  2. Просеиваем грунт сначала через сито с отв. 0.5 мм. Остаток на сите взвешиваем и сравниваем с исходной массой образца – если масса остатка больше половины (> то песок крупный
  3. Если получилось менее 50 % — просеиваем ту часть грунта, которая прошла через сито с отверстиями 0.5 мм на сите с отверстиями 0.25 мм. Взвешиваем остаток и складываем полученную массу с массой остатка на сите 0.5 мм. Получаем общую массу остатка на сите 0.25 мм и сравниваем с массой исходной пробы — если масса остатка больше половины (>50%) общей исходной массы образца, то песок средний , испытание можно не продолжать;
  4. Если снова получилось менее 50 % — просеиваем ту часть грунта, которая прошла через сито с отверстиями 0.25 мм на сите с отверстиями 0.1 мм. Взвешиваем остаток и складываем полученную массу с массой остатков на ситах 0.25 и 0.5 мм. Получаем общую массу остатка на сите 0.1 мм и сравниваем с массой исходной пробы — если масса остатка больше 75% общей исходной массы образца, то песок мелкий , если же получилось менее 75% то песок пылеватый . На этом с зерновым составом всё.

Теперь рассмотрим случай, когда грунт оказался глинистым (таких случаев будет большинство). В этом случаем мы по таблице выше уже определили суглинок, глина или супесь перед нами:

Фото. Грунт — глина

Фото. Грунт — супесь

и теперь необходимо определить показатель текучести грунта I L (консистенцию) в природном состоянии, то есть при той влажности которая была у него до отбора пробы (природная влажность).

Т.к. точно определить показатель текучести без лабораторного оборудования достаточно сложно (необходимо точно определить влажность грунта в трех состояниях, в сухом – после прокаливания грунта температурой 105°С), то придется определять этот показатель приблизительно по косвенным признакам пользуясь таблицей:

Консистенция глинистого
грунта
Косвенные признаки состояния Показатель текучести J L
Супесь
Твердое При ударе рассыпается на куски.
При растирании пылит, ломается на куски
J L
Пластичное Легко разминается, сохраняет форму,
ощущается влажность, иногда липкость
0 ≤ J L ≤ 1,00
Текучее Легко деформируется и растекается
при нажатии
J L > 1,00
Суглинок и глина
Твердое При ударе распадается на куски,
при сжатии в ладони рассыпается,
при растирании пылит, тупой конец
карандаша вдавливается с трудом
J L
Полутвердое Ломается без заметного изгиба, поверхность
излома - шероховатая, при разминании
крошится, тупой конец карандаша оставляет
неглубокий след и вдавливается при
сильном нажатии
0 ≤ J L ≤ 0,25
Тугопластичное Брусок грунта заметно изгибается, не
ломаясь. Кусок грунта разминается с
трудом. Тупой конец карандаша
вдавливается без особого усилия
0,25
Мягкопластичное На ощупь влажный, легко разминается,
сохраняет приданную форму, но иногда
на непродолжительное время, палец
вдавливается несколько сантиметров
0,50
Текучепластичное На ощупь очень влажный, разминается
при легком нажиме, при формировании
не сохраняет форму, не раскатывается в
жгут т.к. слишком текучий, сильно
прилипает
0,75
Текучее Стекает по наклонной плоскости толстым
слоем (языком), по поведению похож на
очень вязкую жидкость
J L > 1,00

Из таблицы для надежности лучше принимать I L по верхней границе диапазона в последнем столбце, но можно принять и среднее значение диапазона.

Коэффициент пористости е , д. е. и для песчаных и для глинистых грунтов определяется одинаково; определяют по его формуле:

е = P s / P d ,

где p s - плотность частиц грунта, г/см3;

p d - плотность сухого грунта, г/см3.

Плотность частиц P s практически не меняется для всех грунтов и принимается по таблице:

Плотность сухого грунта P d (плотность скелета грунта) определяем следующим способом:

  • Берем образец грунта ненарушенной структуры известного объема около 100 см3. Сделать это можно аккуратно вырезав, например, куб 5х5х5 см, или прямоугольный параллелепипед – тогда объем вычисляется линейкой и калькулятором, а можно вдавливая отрезок трубы на определенную глубину. Фиксируем объем V об . Взвешиваем образец и фиксируем его массу m – по ней мы можем определить природную плотность грунта P = m / V об. ;
  • Затем помещаем образец в открытый полиэтиленовый пакет и сушим на воздухе в сухом помещении, лучше его разрыхлить для ускорения процесса (Вообще грунт нужно прокаливать при температуре 105 градусов до воздушно-сухого состояния чтобы удалить связанную воду);
  • После высушивания образца взвешиваем его на электронных весах – получаем массу сухого образца m s ;
  • Вычисляем плотность скелета грунта по формуле: P d = m s / V об.
  • Возвращаемся к вычислению коэффициента пористости е = P s / P d ,.

Теперь по полученным данным можем используя таблицы 26..28 и 45..50 определить все необходимые для расчетов устойчивости основания фундамента и его осадок физико-механические характеристики:

с п, φ n , град, и модуля деформации Е, МПа (кгс/см 2), песчаных грунтов четвертичных отложений.

Нормативные значения удельного сцепления с п, кПа (кгс/см 2), угла внутреннего трения φ n , град, пылевато-глинистых нелессовых грунтов четвертичных отложений

Нормативные значения модуля деформации пылевато-глинистых нелессовых грунтов

Примечания к таблицам:

  1. Для грунтов с промежуточными значениями е , против указанных в таблицах, допускается определять значения с n , φ n и Е по интерполяции.
  2. Если значения е , I L , и S r грунтов выходят за пределы, предусмотренные таблицах, характеристики с п , φ n и Е следует определять по данным непосредственных испытаний этих грунтов.
  3. Допускается в запас надежности принимать характеристики c п , φ n и Е по соответствующим нижним пределам e , I L и S r таблиц, если грунты имеют значение e , I L и S r меньше этих нижних предельных значений.

Можно так же для предварительных расчетов воспользоваться табличными значениями расчетного сопротивления грунта R 0 , тогда не придется вычислять его по формуле, но можно сильно потерять в точности:

Предварительные размеры фундаментов должны назначаться по конструктивным соображениям или исходя из табличных значений расчетного сопротивления грунтов основания R 0 в соответствии с таблицами. Значениями R 0 допускается также пользоваться для окончательного назначения размеров фундаментов зданий и сооружений III класса, если основание сложено горизонтальными (уклон не более 0,1) выдержанными по толщине слоями грунта, сжимаемость которых не увеличивается в пределах глубины, равной двойной ширине наибольшего фундамента, считая от его подошвы.

При использовании значений R 0 для окончательного назначения размеров фундаментов пп. расчетное сопротивление грунта основания R , кПа (кгс/см 2), определяется по формулам:

при d ≤ 2 м (200 см)

R = R 0 · · (d + d 0) / 2d 0 ;

при d > 2 м (200 см)

R = R 0 · + k 2 g II · (d — d 0),

где b и d — соответственно ширина и глубина заложения проектируемого фундамента, м (см); g II — расчетное значение удельного веса грунта, расположенного выше подошвы фундамента, кН/м 3 (кгс/см 3); k 1 — коэффициент, принимаемый для оснований, сложенных крупнообломочными и песчаными грунтами, кроме пылеватых песков, k 1 = 0,125, пылеватыми песками, супесями, суглинками и глинами k 1 = 0,05; k 2 — коэффициент, принимаемый для оснований, сложенных крупнообломочными и песчаными грунтами, k 2 = 0,25, супесями и суглинками k 2 = 0,2 и глинами k 2 = 0,15.

Примечание. Для сооружений с подвалом шириной В ≤ 20 м и глубиной d b ³ 2 м учитываемая в расчете глубина заложения наружных и внутренних фундаментов принимается равной: d = d 1 + 2 м (здесь d 1 — приведенная глубина заложения фундамента, определяемая по формуле (34 (8)) настоящих норм). При B > 20 м принимается d = d 1 .

Расчетные сопротивления R 0 крупнообломочных грунтов

Расчетные сопротивления R 0 песчаных грунтов

Расчетные сопротивления R 0 пылевато-глинистых (непросадочных) грунтов

Расчетные сопротивления R 0 насыпных грунтов

Примечания: 1. Значения R 0 в настоящей таблице относятся к насыпным грунтам с содержанием органических веществ I от ≤ 0,1.

  1. 2. Для неслежавшихся отвалов и свалок грунтов и отходов производств значения R 0 принимаются с коэффициентом 0,8.

Степень пучинистости грунта можно определить по таблице в статье

7. Заключение

В заключение отмечу еще раз что для проектирования максимально правильного, надежного и при этом экономичного фундамента необходимы точные сведения о грунтах в основании будущей постройки.

Если принято решение строить без инженерно-геологических изысканий, то используя материалы этой статьи можно хотя бы приблизительно определить характеристики грунта по визуальным и косвенным признакам используя таблицы нормативной литературы.

[без лабораторных исследований не получится определить такие важные свойства грунта как: просадочность, набухание, агрессивность к бетону и стали и др.]

В статье рассмотрена последовательность действий, которая позволяет получить требуемые для расчетов фундаментов характеристики грунта начиная от отбора проб и заканчивая извлечением данных из таблиц самостоятельно.

Полезно так же будет изучить, например, учебное пособие « » — много полезной информации по теме.

8. Связанные статьи

  • Развернутая классификация грунтов
  • Особые грунтовые условия — многолетняя мерзлота
  • Особые грунтовые условия – скальные грунты
  • Сбор нагрузки на фундамент, перекрытие, колонну и другие конструкции
  • Расчеты столбчатых и ленточных фундаментов на вертикальную сжимающую нагрузку

Таблица классификации грунтов по группам

От надежности функционирования системы «основание-фундамент-сооружение» зависит и срок эксплуатации здания, и уровень «качества жизни» его жильцов. Причем, надежность указанной системы базируется именно на характеристиках грунта, ведь любая конструкция должна опираться на надежное основание.

Именно поэтому, успех большинства начинаний строительных компаний зависит от грамотного выбора месторасположения строительной площадки. И такой выбор, в свою очередь, невозможен без понимания тех принципов, на которых основывается классификация грунтов.

С точки зрения строительных технологий существуют четыре основных класса, к которым принадлежат:

Скальные грунты, структура которых однородна и основана на жестких связях кристаллического типа;
- дисперсные грунты, состоящие из несвязанных между собой минеральных частиц;
- природные, мерзлые грунты, структура которых образовалась естественным путем, под действием низких температур;
- техногенные грунты, структура которых образовалась искусственным путем, в результате деятельности человека.


Впрочем, подобная классификация грунтов имеет несколько упрощенный характер и показывает только на степень однородности основания. Исходя из этого, любой скальный грунт представляет собой монолитное основание, состоящее из плотных пород. В свою очередь, любой нескальный грунт основан на смеси минеральных и органических частиц с водой и воздухом.

Разумеется, в строительном деле пользы от такой классификации немного. Поэтому, каждый тип основания разделяют на несколько классов, групп, типов и разновидностей. Подобная классификация грунтов по группам и разновидностям позволяет без труда сориентироваться в предполагаемых характеристиках будущего основания и дает возможность использовать эти знания в процессе строительства дома.

Например, принадлежность к той или иной группе в классификации грунтов определяется характером структурных связей, влияющих на прочностные характеристики основания. А конкретный тип грунта указывает на вещественный состав почвы. Причем, каждая классификационная разновидность указывает на конкретное соотношение компонентов вещественного состава.

Таким образом, глубокая классификация грунтов по группам и разновидностям дает вполне персонифицированное представление обо всех преимущества и недостатки будущей строительной площадки.

Например, в наиболее распространенном на территории европейской части России классе дисперсных грунтов имеется всего две группы, разделяющие эту классификацию на связанные и несвязанные почвы. Кроме того, в отдельную подгруппу дисперсного класса выделены особые, илистые грунты.

Такая классификация грунтов означает, что среди дисперсных грунтов имеются группы, как с ярко выраженными связями в структуре, так и с отсутствием таковых связей. К первой группе связанных дисперсных грунтов относятся глинистые, илистые и заторфованные виды почвы. Дальнейшая классификация дисперсных грунтов позволяет выделить группу с несвязной структурой – пески и крупнообломочные грунты.

В практическом плане подобная классификация грунтов по группам позволяет получить представление о физических характеристиках почвы «без оглядки» на конкретный вид грунта. У дисперсных связных грунтов практически совпадают такие характеристики, как естественная влажность (колеблется в пределах 20%), насыпная плотность (около 1,5 тонн на кубометр), коэффициент разрыхления (от 1,2 до 1,3), размер частиц (около 0,005 миллиметра) и даже число пластичности.

Аналогичные совпадения характерны и для дисперсных несвязных грунтов. То есть, имея представление о свойствах одного вида грунта, мы получаем сведения о характеристиках всех видов почвы из конкретной группы, что позволяет внедрять в процесс проектирования усредненные схемы, облегчающие прочностные расчеты.

Кроме того, помимо вышеприведенных схем, существует и особая классификация грунтов по трудности разработки. В основе этой классификации лежит уровень «сопротивляемости» грунта механическому воздействию со стороны землеройной техники.

Причем, классификация грунтов по трудности разработки зависит от конкретного вида техники и разделяет все типы грунтов на 7 основных групп, к которым принадлежат дисперсные, связанные и несвязанные грунты (группы 1-5) и скальные грунты (группы 6-7).

Песок, суглинок и глинистые грунты (принадлежат к 1-4 группе) разрабатывают обычными экскаваторами и бульдозерами. А вот остальные участники классификации требуют более решительного подхода, основанного на механическом рыхлении или взрывных работах. В итоге, можно сказать, что классификация грунтов по трудности разработки зависит от таких характеристик, как сцепление, разрыхляемость и плотность грунта.

ГЕНЕТИЧЕСКИЕ ТИПЫ ГРУНТОВ ЧЕТВЕРТИЧНОГО ВОЗРАСТА

Типы грунтов Обозначение
Аллювиальные (речные отложения) a
Озерные l
Озерно-аллювиальные
Делювиальные (отложения дождевых и талых вод на склонах и у подножия возвышенностей) d
Аллювиально-делювиальные ad
Эоловые (осаждения из воздуха): эоловые пески, лессовые грунты L
Гляциальные (ледниковые отложения) g
Флювиогляциальные (отложении ледниковых потоков) f
Озерно-ледниковые lg
Элювиальные (продукты выветривания горных пород, оставшиеся на месте образования) е
Элювиально-делювиальное ed
Пролювиальные (отложения бурных дождевых потоков в горных областях) p
Аллювиально-пролювиальные ap
Морские m

РАСЧЕТНЫЕ ФОРМУЛЫ ОСНОВНЫХ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ГРУНТОВ

ПЛОТНОСТЬ ЧАСТИЦ ρ s ПЕСЧАНЫХ И ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ

КЛАССИФИКАЦИЯ СКАЛЬНЫХ ГРУНТОВ

Грунт Показатель
По пределу прочности на одноосное сжатие в водонасыщенном состоянии, МПа
Очень прочный R c > 120
Прочный 120 ≥ R c > 50
Средней прочности 50 ≥ R c > 15
Малопрочный 15 ≥ R c > 5
Пониженной прочности 5 ≥ R c > 3
Низкой прочности 3 ≥ R c ≥ 1
Весьма низкой прочности R c < 1
По коэффициенту размягчаемости в воде
Неразмягчаемый K saf ≥ 0,75
Размягчаемый K saf < 0,75
По степени растворимости в воде (осадочные сцементированные), г/л
Нерастворимый Растворимость менее 0,01
Труднорастворимый Растворимость 0,01—1
Среднерастворимый − || − 1—10
Легкорастворимый − || − более 10

КЛАССИФИКАЦИЯ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО ГРАНУЛОМЕТРИЧЕСКОМУ СОСТАВУ

ПОДРАЗДЕЛЕНИЕ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО СТЕПЕНИ ВЛАЖНОСТИ S r

ПОДРАЗДЕЛЕНИЕ ПЕСЧАНЫХ ГРУНТОВ ПО ПЛОТНОСТИ СЛОЖЕНИЯ

Песок Подразделение по плотности сложения
плотный средней плотности рыхлый
По коэффициенту пористости
Гравелистый, крупный и средней крупности e < 0,55 0,55 ≤ e ≤ 0,7 e > 0,7
Мелкий e < 0,6 0,6 ≤ e ≤ 0,75 e > 0,75
Пылеватый e < 0,6 0,6 ≤ e ≤ 0,8 e > 0,8
По удельному сопротивлению грунта, МПа, под наконечником (конусом) зонда при статическом зондировании
q c > 15 15 ≥ q c ≥ 5 q c < 5
Мелкий независимо от влажности q c > 12 12 ≥ q c ≥ 4 q c < 4
Пылеватый:
маловлажный и влажный
водонасыщенный

q c > 10
q c > 7

10 ≥ q c ≥ 3
7 ≥ q c ≥ 2

q c < 3
q c < 2
По условному динамическому сопротивлению грунта МПа, погружению зонда при динамическом зондировании
Крупный и средней крупности независимо от влажности q d > 12,5 12,5 ≥ q d ≥ 3,5 q d < 3,5
Мелкий:
маловлажный и влажный
водонасыщенный

q d > 11
q d > 8,5

11 ≥ q d ≥ 3
8,5 ≥ q d ≥ 2

q d < 3
q d < 2
Пылеватый маловлажный и влажный q d > 8,8 8,5 ≥ q d ≥ 2 q d < 2

ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ЧИСЛУ ПЛАСТИЧНОСТИ

ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ПОКАЗАТЕЛЮ ТЕКУЧЕСТИ

ПОДРАЗДЕЛЕНИЕ ИЛОВ ПО КОЭФФИЦИЕНТУ ПОРИСТОСТИ

ПОДРАЗДЕЛЕНИЕ САПРОПЕЛЕЙ ПО ОТНОСИТЕЛЬНОМУ СОДЕРЖАНИЮ ОРГАНИЧЕСКОГО ВЕЩЕСТВА

НОРМАТИВНЫЕ ЗНАЧЕНИЯ МОДУЛЕЙ ДЕФОРМАЦИИ Е ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ

Возраст и происхождение грунтов Грунт Показатель текучести Значения Е , МПа, при коэффициенте пористости е
0,35 0,45 0,55 0,65 0,75 0,85 0,95 1,05 1,2 1,4 1,6
Четвертичные отложения: иллювиальные, делювиальные, озерно-аллювиальные Супесь 0 ≤ I L ≤ 0,75 - 32 24 16 10 7 - - - - -
Суглинок 0 ≤ I L ≤ 0,25 - 34 27 22 17 14 11 - - - -
0,25 < I L ≤ 0,5 - 32 25 19 14 11 8 - - - -
0,5 < I L ≤ 0,75 - - - 17 12 8 6 5 - - -
Глина 0 ≤ I L ≤ 0,25 - - 28 24 21 18 15 12 - - -
0,25 < I L ≤ 0,5 - - - 21 18 15 12 9 - - -
0,5 < I L ≤ 0,75 - - - - 15 12 9 7 - - -
флювиогляциальные Супесь 0 ≤ I L ≤ 0,75 - 33 24 17 11 7 - - - - -
Суглинок 0 ≤ I L ≤ 0,25 - 40 33 27 21 - - - - - -
0,25<I L ≤0,5 - 35 28 22 17 14 - - - - -
0,5 < I L ≤ 0,75 - - - 17 13 10 7 - - - -
моренные Супесь и суглинок I L ≤ 0,5 75 55 45 - - - - - - - -
Юрские отложения оксфордского яруса Глина − 0,25 ≤ I L ≤ 0 - - - - - - 27 25 22 - -
0 < I L ≤ 0,25 - - - - - - 24 22 19 15 -
0,25 < I L ≤ 0,5 - - - - - - - - 16 12 10

Определение модуля деформации в полевых условиях

Модуль деформации определяют испытанием грунта статической нагрузкой, передаваемой на штамп. Испытания проводят в шурфах жестким круглым штампом площадью 5000 см 2 , а ниже уровня грунтовых вод и на больших глубинах — в скважинах штампом площадью 600 см 2 .


Зависимость осадки штампа s от давления р

1 — резиновая камера; 2 — скважина; 3 — шланг; 4 — баллон сжатого воздуха: 5 — измерительное устройство

Зависимость деформаций стенок скважины Δr от давления р

Для определения модуля деформации используют график зависимости осадки от давления, на котором выделяют линейный участок, проводят через него осредняющую прямую и вычисляют модуль деформации Е в соответствии с теорией линейно-деформируемой среды по формуле

E = (1 − ν 2)ωd Δp / Δs

Где v — коэффициент Пуассона (коэффициент поперечной деформации), равный 0,27 для крупнообломочных грунтов, 0,30 для песков и супесей, 0,35 для суглинков и 0,42 для глин; ω — безразмерный коэффициент, равный 0,79; d р — приращение давления на штамп; Δs — приращение осадки штампа, соответствующее Δр .

При испытании грунтов необходимо, чтобы толщина слоя однородного грунта под штампом была не менее двух диаметров штампа.

Модули деформации изотропных грунтов можно определять в скважинах с помощью прессиометра. В результате испытаний получают график зависимости приращения радиуса скважины от давления на ее стенки. Модуль деформации определяют на участке линейной зависимости деформации от давления между точкой р 1 , соответствующей обжатию неровностей стенок скважины, и точкой р 2 E = kr 0 Δp / Δr

Где k — коэффициент; r 0 — начальный радиус скважины; Δр — приращение давления; Δr — приращение радиуса, соответствующее Δр .


Коэффициент k определяется, как правило, путем сопоставления данных прессиометрии с результатами параллельно проводимых испытаний того же грунта штампом. Для сооружений II и III класса допускается принимать в зависимости от глубины испытания h следующие значения коэффициентов k в формуле: при h < 5 м k = 3; при 5 м ≤ h ≤ 10 м k h ≤ 20 м k = 1,5.


Для песчаных и пылевато-глинистых грунтов допускается определять модуль деформации на основе результатов статического и динамического зондирования грунтов. В качестве показателей зондирования принимают: при статическом зондировании — сопротивление грунта погружению конуса зонда q c , а при динамическом зондирований — условное динамическое сопротивление грунта погружению конуса q d . Для суглинков и глин E = 7q c и E = 6q d ; для песчаных грунтов E = 3q c , а значения Е по данным динамического зондирования приведены в таблице. Для сооружений I и II класса является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов штампами.

ЗНАЧЕНИЯ МОДУЛЕЙ ДЕФОРМАЦИИ Е ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

Для сооружений III класса допускается определять Е только по результатам зондирования.


Определение модуля деформации в лабораторных условиях

В лабораторных условиях применяют компрессионные приборы (одометры), в которых образец грунта сжимается без возможности бокового расширения. Модуль деформации вычисляют на выбранном интервале давлений Δр = p 2 − p 1 графика испытаний (рис. 1.4) по формуле

E oed = (1 + e 0)β / a
где e 0 — начальный коэффициент пористости грунта; β — коэффициент, учитывающий отсутствие поперечного расширения грунта в приборе и назначаемый в зависимости от коэффициента Пуассона v ; а — коэффициент уплотнения;
a = (e 1 − e 2)/(p 2 − p 1)

СРЕДНИЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ПУАССОНА v β

КОЭФФИЦИЕНТЫ m ДЛЯ АЛЛЮВИАЛЬНЫХ, ДЕЛЮВИАЛЬНЫХ, ОЗЕРНЫХ И ОЗЕРНО-АЛЛЮВИАЛЬНЫХ ЧЕТВЕРТИЧНЫХ ГРУНТОВ ПРИ ПОКАЗАТЕЛЕ ТЕКУЧЕСТИ I L ≤ 0,75

НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИИ c φ , град, ПЕСЧАНЫХ ГРУНТОВ

Песок Характеристика Значения с и φ при коэффициенте пористости e
0,45 0,55 0,65 0,75
Гравелистый и крупный с
φ
2
43
1
40
0
38
-
-
Средней крупности с
φ
3
40
2
38
1
35
-
-
Мелкий с
φ
6
38
4
36
2
32
0
28
Пылеватый с
φ
8
36
6
34
4
30
2
26

НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИЯ c , кПа, И УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ , град, ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ЧЕТВЕРТИЧНЫХ ОТЛОЖЕНИЙ

Грунт Показатель текучести Характеристика Значения с и φ при коэффициенте пористости е
0,45 0,55 0,65 0,75 0,85 0,95 1,05
Супесь 0<I L ≤0,25 с
φ
21
30
17
29
15
27
13
24
-
-
-
-
-
-
0,25<I L ≤0,75 с
φ
19
28
15
26
13
24
11
21
9
18
-
-
-
-
Суглинок 0<I L ≤0,25 с
φ
47
26
37
25
31
24
25
23
22
22
19
20
-
-
0,25<I L ≤0,5 с
φ
39
24
34
23
28
22
23
21
18
19
15
17
-
-
0,5<I L ≤0,75 с
φ
-
-
-
-
25
19
20
18
16
16
14
14
12
12
Глина 0<I L ≤0,25 с
φ
-
-
81
21
68
20
54
19
47
18
41
16
36
14
0,25<I L ≤0,5 с
φ
-
-
-
-
57
18
50
17
43
16
37
14
32
11
0,5<I L ≤0,75 с
φ
-
-
-
-
45
15
41
14
36
12
33
10
29
7

ЗНАЧЕНИЯ УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

ОРИЕНТИРОВОЧНЫЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ФИЛЬТРАЦИИ ГРУНТОВ

ЗНАЧЕНИЯ СТАТИСТИЧЕСКОГО КРИТЕРИЯ

Число
определений
v Число
определений
v Число
определений
v
6 2,07 13 2,56 20 2,78
7 2,18 14 2,60 25 2,88
8 2,27 15 2,64 30 2,96
9 2,35 16 2,67 35 3,02
10 2,41 17 2,70 40 3,07
11 2,47 18 2,73 45 3,12
12 2,52 19 2,75 50 3,16

ТАБЛИЦА 1.22. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА t α ПРИ ОДНОСТОРОННЕЙ ДОВЕРИТЕЛЬНОЙ ВЕРОЯТНОСТИ α

Число
определений
n −1 или n −2
t α при α Число
определений
n −1 или n −2
t α при α
0,85 0,95 0,85 0,95
2 1,34 2,92 13 1,08 1,77
3 1,26 2,35 14 1,08 1,76
4 1,19 2,13 15 1,07 1,75
5 1,16 2,01 16 1,07 1,76
6 1,13 1,94 17 1,07 1,74
7 1,12 1,90 18 1,07 1,73
8 1,11 1,86 19 1,07 1,73
9 1,10 1,83 20 1,06 1,72
10 1,10 1,81 30 1,05 1,70
11 1,09 1,80 40 1,06 1,68
12 1,08 1,78 60 1,05 1,67




Грунт (нем. Grund - основа, почва) - горные породы, почвы, техногенные образования, представляющие собой многокомпонентную и многообразную геологическую систему и являющиеся объектом инженерно-хозяйственной деятельности человека.


V - категория - Крепкий глинистый сланец. Некрепкий песчаник и известняк. Мягкий конгломерат. Вечномёрзлые сезонно промерзающие грунты: супеси, суглинки и глины с примесью гравия, гальки, щебня и валунов до 10% по объёму,а также моренные грунты и речные отложения с содержанием крупной гальки и валунов до 30% по объёму.

VI - категория - Сланцы крепкие.Песчаник глинистый и слабый мергелистый известняк. Мягкий доломит и средний змеевик. Вечномёрзлые сезонно промерзающие грунты: супеси, суглинки и глины с примесью гравия, гальки, щебня и валунов до 10% по объёму, а также моренные грунты и речные отложения с содержанием крупной гальки и валунов до 50% по объёму

VII - категория - Сланцы окварцованные и слюдяные. Песчаник плотный и твёрдый мергелистый известняк. Плотный доломит и крепкий змеевик. Мрамор. Вечномёрзлые сезонно промерзающие грунты: моренные грунты и речные отложения с содержанием крупной гальки и валунов до 70% по объёму.

Виды грунта

Плывуны - содержат мелкие глинистые или песчаные частицы, разбавленные водой. Степень плывучести определяется по количеству воды в грунте.

Сыпучие грунты (песок, гравий, щебень, галька) состоят из слабосцепленных между собой частиц разного размера.

Торфяники - биологический объект, экосистема, включающий комплекс растений и их остатков, образующих в условиях повышенной влажности взаимозависимое сообщество. Высший тип существования живых организмов, аналогичный коралловым рифам, лесным массивам и городским мегаполисам.

Мягкие грунты - содержат слабосвязанные между собой частицы землистых пород (глинистых или песчано-глинистых)

Слабые грунты (гипс, глинистые сланцы и др.) состоят из слабосвязанных между собой частиц пористых пород.

Средние грунты - (плотные известняки, плотные сланцы, песчаники, известковый шпат) состоят из связанных между собой частиц пород средней твердости.

Крепкие грунты - (плотные известняки, кварцевые породы, полевые шпаты и др.) содержат связанные между собой частицы пород большой твердости.

Разрабатывать плывуны, сыпучие, мягкие и слабые грунты легко, но они требуют постоянного укрепления стенок шахты деревянными щитами с распорками. Средние и крепкие грунты разрабатывать тяжелее, но они не осыпаются и не требуют дополнительного крепления.

Асфальт (от греч. άσφαλτος - горная смола) - смесь битумов (60-75 % в природном асфальте, 13-60 % - в искусственном) с минеральными материалами: гравием и песком (щебнем или гравием, песком и минеральным порошком в искусственном асфальте). Применяют для устройства покрытий на автомобильных дорогах, как кровельный, гидро и электроизоляционный материал, для приготовления замазок, клеев, лаков и др. Асфальт может быть природного и искусственного происхождения. Часто словом асфальт называют асфальтобетон - искусственный каменный материал, который получается в результате уплотнения асфальтобетонных смесей. Классический асфальтобетон состоит из щебня, песка, минерального порошка (филера) и битумного вяжущего (битум, полимерно-битумное вяжущее; ранее использовался дёготь, однако он в настоящее время не применяется). Для разрушения (пропилки) асфальтовых покрытий существует такая техника в аренду, как



Новое на сайте

>

Самое популярное