Домой Электрика и освещение Как найти общее и частное решение системы линейных уравнений.

Как найти общее и частное решение системы линейных уравнений.

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

I. Постановка задачи.

II. Совместность однородных и неоднородных систем.

III. Система т уравнений с т неизвестными. Правило Крамера.

IV. Матричный метод решения систем уравнений.

V. Метод Гаусса.

I. Постановка задачи.

Систему уравнений вида

называют системой m линейных уравнений с n неизвестными
. Коэффициенты уравнений этой системы записывают в виде матрицы

которую называют матрицей системы (1).

Числа, стоящие в правых частях уравнений, образуют столбец свободных членов {B }:

.

Если столбец {B }={0 }, то система уравнений называется однородной . В противном случае, когда {B }≠{0 } – система неоднородна .

Система линейных уравнений (1) может быть записана в матричном виде

[A ]{x }={B }. (2)

Здесь - столбец неизвестных.

Решить систему уравнений (1) - значит найти совокупность n чисел
такую, что при подстановке в систему (1) вместо неизвестных
каждое уравнение системы обращается в тождество. Числа
называются решением системы уравнений.

Система линейных уравнений может иметь одно решение

,

может иметь бесчисленное множество решений

или не иметь решений совсем

.

Системы уравнений, не имеющие решений, называются несовместными . Если система уравнений имеет хотя бы одно решение, то она называетсясовместной . Система уравнений называетсяопределенной , если она имеет единственное решение, инеопределенной , если имеет бесчисленное множество решений.

II. Совместность однородных и неоднородных систем.

Условие совместности системы линейных уравнений (1) формулируется в теореме Кронекера-Капелли : система линейных уравнений имеет хотя бы одно решение в том и только в том случае, когда ранг матрицы системы равен рангу расширенной матрицы:
.

Расширенной матрицей системы называют матрицу, получающуюся из матрицы системы приписыванием к ней справа столбца свободных членов:

.

Если RgA A * , то система уравнений несовместна.

Однородные системы линейных уравнений в соответствии с теоремой Кронекера-Капелли всегда совместны. Рассмотрим случай однородной системы, в которой число уравнений равно числу неизвестных, то есть т=п . Если определитель матрицы такой системы не равен нулю, т.е.
, однородная система имеет единственное решение, которое является тривиальным (нулевым). Однородные системы имеют бесчисленное множество решений, если среди уравнений системы есть линейно зависимые, т.е.
.

Пример. Рассмотрим однородную систему трех линейных уравнений с тремя неизвестными:

и исследуем вопрос о количестве ее решений. Каждое из уравнений можно считать уравнением плоскости, проходящей через начало координат (D =0 ). Система уравнений имеет единственное решение, когда все три плоскости пересекаются в одной точке. При этом их нормальные векторы некомпланарны, и, следовательно, выполняется условие

.

Решение системы при этом x =0, y =0, z =0 .

Если хотя бы две из трех плоскостей, например, первая и вторая, параллельны, т.е. , то определитель матрицы системы равен нулю, а система имеет бесчисленное множество решений. Причем решениями будут координатыx , y , z всех точек, лежащих на прямой

Если же все три плоскости совпадают, то система уравнений сведется к одному уравнению

,

а решением будут координаты всех точек, лежащих в этой плоскости.

При исследовании неоднородных систем линейных уравнений вопрос о совместности решается с помощью теоремы Кронекера-Капелли. Если же число уравнений в такой системе равно числу неизвестных, то система имеет единственное решение, если ее определитель не равен нулю. В противном случае система либо несовместна, либо имеет бесчисленное множество решений.

Пример . Исследуем неоднородную систему двух уравнений с двумя неизвестными

.

Уравнения системы можно рассматривать как уравнения двух прямых на плоскости. Система несовместна, когда прямые параллельны, т.е.
,
. В этом случае ранг матрицы системы равен 1:

RgA =1 , т.к.
,

а ранг расширенной матрицы
равен двум, т. к. для нее в качестве базисного минора может быть выбран минор второго порядка, содержащий третий столбец.

В рассматриваемом случае RgA A * .

Если прямые совпадают, т.е. , то система уравнений имеет бесчисленное множество решений: координаты точек на прямой
. В этом случаеRgA = RgA * =1.

Система имеет единственное решение, когда прямые не параллельны, т.е.
. Решением этой системы являются координаты точки пересечения прямых

III. Система т уравнений с т неизвестными. Правило Крамера.

Рассмотрим простейший случай, когда число уравнений системы равно числу неизвестных, т.е. m = n . Если детерминант матрицы системы отличен от нуля, решение системы может быть найдено по правилу Крамера:

(3)

Здесь
- определитель матрицы системы,

- определитель матрицы, получаемой из [A ] заменой i -ого столбца на столбец свободных членов:

.

Пример . Решить систему уравнений методом Крамера.

Решение :

1) найдем определитель системы

2) найдем вспомогательные определители

3) найдем решение системы по правилу Крамера:

Результат решения может быть проверен подстановкой в систему уравнений

Получены верные тождества.

IV. Матричный метод решения систем уравнений.

Запишем систему линейных уравнений в матричном виде (2)

[A ]{x }={B }

и умножим правую и левую части соотношения (2) слева на матрицу [A -1 ], обратную матрице системы:

[A -1 ][A ]{x }=[A -1 ]{B }. (2)

По определению обратной матрицы произведение [A -1 ][A ]=[E ], а по свойствам единичной матрицы [E ]{x }={x }. Тогда из соотношения (2") получаем

{x }=[A -1 ]{B }. (4)

Соотношение (4) лежит в основе матричного метода решения систем линейных уравнений: необходимо найти матрицу, обратную матрице системы, и умножить на нее слева вектор-столбец правых частей системы.

Пример . Решим матричным методом систему уравнений, рассмотренную в предыдущем примере.

Матрица системы
ее определитель detA ==183 .

Столбец правых частей
.

Чтобы найти матрицу [A -1 ], найдем матрицу, присоединенную к [A ]:

или

В формулу для вычисления обратной матрицы входит
, тогда

Теперь можно найти решение системы

Тогда окончательно получаем .

V. Метод Гаусса.

При большом числе неизвестных решение системы уравнений методом Крамера или матричным методом связано с вычислением определителей высокого порядка или обращением матриц больших размеров. Эти процедуры весьма трудоемки даже для современных ЭВМ. Поэтому для решения систем большого числа уравнений чаще пользуются методом Гаусса.

Метод Гаусса заключается в последовательном исключении неизвестных путем элементарных преобразований расширенной матрицы системы. К элементарным преобразованиям матрицы относят перестановку строк, сложение строк, умножение строк на числа, отличные от нуля. В результате преобразований удается матрицу системы свести к верхней треугольной, на главной диагонали которой стоят единицы, а ниже главной диагонали - нули. В этом заключается прямой ход метода Гаусса. Обратный ход метода состоит в непосредственном определении неизвестных, начиная с последнего.

Проиллюстрируем метод Гаусса на примере решения системы уравнений

На первом шаге прямого хода добиваются того, чтобы коэффициент
преобразованной системы стал равен 1 , а коэффициенты
и
обратились в ноль. Для этого первое уравнение умножим на1/10 , второе уравнение умножим на 10 и сложим с первым, третье уравнение умножим на -10/2 и сложим с первым. После этих преобразований получим

На втором шаге добиваемся того, чтобы после преобразований коэффициент
стал равным1 , а коэффициент
. Для этого второе уравнение разделим на 42 , а третье уравнение умножим на -42/27 и сложим со вторым. Получим систему уравнений

На третьем шаге должны получить коэффициент
. Для этого третье уравнение разделим на(37 - 84/27) ; получим

На этом прямой ход метода Гаусса заканчивается, т.к. матрица системы сведена к верхней треугольной:

Осуществляя обратный ход, найдем неизвестные

Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y - это неизвестные, значение которых надо найти, b, a - коэффициенты при переменных, c - свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 - функции, а (x, y) - переменные функций.

Решить систему уравнений - это значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака "равенство" часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения - это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 - 4*a*c, где D - искомый дискриминант, b, a, c - множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. n*m имеет n - строк и m - столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей - вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица - это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение - одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y - только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K -1 = 1 / |K|, где K -1 - обратная матрица, а |K| - определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы "два на два", необходимо лишь помножить друг на друга элементы по диагонали. Для варианта "три на три" существует формула |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере a nm - коэффициенты уравнений, матрица - вектор x n - переменные, а b n - свободные члены.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса - Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 - соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x 3 -2x 4 =11 и 3x 3 +2x 4 =7. Решение любого из уравнений позволит узнать одну из переменных x n .

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака "стрелка" и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.

Система линейных уравнений - это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Решение системы уравнений - это последовательность чисел (k 1 , k 2 , ..., k n ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1 , x 2 , ..., x n дает верное числовое равенство.

Соответственно, решить систему уравнений - значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

  1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.
  2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.
  3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» - надо описать, как устроено это множество.

Переменная x i называется разрешенной, если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной x i должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1 , x 3 и x 4 . Впрочем, с тем же успехом можно утверждать, что вторая система - разрешенная относительно x 1 , x 3 и x 5 . Достаточно переписать самое последнее уравнение в виде x 5 = x 4 .

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

  1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1 , x 2 = b 2 , ..., x k = b k ;
  2. Число разрешенных переменных r меньше общего числа переменных k : r < k . Остальные (k − r ) переменных называются свободными - они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2 , x 5 , x 6 (для первой системы) и x 2 , x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1 , x 2 , ..., x r - разрешенные, а x r + 1 , x r + 2 , ..., x k - свободные, то:

  1. Если задать значения свободным переменным (x r + 1 = t r + 1 , x r + 2 = t r + 2 , ..., x k = t k ), а затем найти значения x 1 , x 2 , ..., x r , получим одно из решений.
  2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все - таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше - неопределенной.

И все бы хорошо, но возникает вопрос: как из исходной системы уравнений получить разрешенную? Для этого существует

Пример 1 . Найти общее решение и какое–нибудь частное решение системы

Решение выполняем с помощью калькулятора . Выпишем расширенную и основную матрицы:

Пунктиром отделена основная матрица A. Сверху пишем неизвестные системы, имея в виду возможную перестановку слагаемых в уравнениях системы. Определяя ранг расширенной матрицы, одновременно найдем ранг и основной. В матрице B первый и второй столбцы пропорциональны. Из двух пропорциональных столбцов в базисный минор может попасть только один, поэтому перенесем, например, первый столбец за пунктирную черту с обратным знаком. Для системы это означает перенос членов с x 1 в правую часть уравнений.

Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы. Работаем с первой строкой: умножим первую строку матрицы на (-3) и прибавим ко второй и третьей строкам по очереди. Затем первую строку умножим на (-2) и прибавим к четвертой.

Вторая и третья строки пропорциональны, следовательно, одну из них, например вторую, можно вычеркнуть. Это равносильно вычеркиванию второго уравнения системы, так как оно является следствием третьего.

Теперь работаем со второй строкой: умножим ее на (-1) и прибавим к третьей.

Минор, обведенный пунктиром, имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на главной диагонали), причем этот минор принадлежит как основной матрице, так и расширенной, следовательно rangA = rangB = 3 .
Минор является базисным. В него вошли коэффициенты при неизвестных x 2 , x 3 , x 4 , значит, неизвестные x 2 , x 3 , x 4 – зависимые, а x 1 , x 5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор (что соответствует пункту 4 приведенного выше алгоритма решения).

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид

Методом исключения неизвестных находим:
, ,

Получили соотношения, выражающие зависимые переменные x 2 , x 3 , x 4 через свободные x 1 и x 5 , то есть нашли общее решение:

Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Найдем два частных решения:
1) пусть x 1 = x 5 = 0, тогда x 2 = 1, x 3 = -3, x 4 = 3;
2) положим x 1 = 1, x 5 = -1, тогда x 2 = 4, x 3 = -7, x 4 = 7.
Таким образом, нашли два решения: (0,1,-3,3,0) – одно решение, (1,4,-7,7,-1) – другое решение.

Пример 2 . Исследовать совместность, найти общее и одно частное решение системы

Решение . Переставим первое и второе уравнения, чтобы иметь единицу в первом уравнении и запишем матрицу B.

Получим нули в четвертом столбце, оперируя первой строкой:

Теперь получим нули в третьем столбце с помощью второй строки:

Третья и четвертая строки пропорциональны, поэтому одну из них можно вычеркнуть, не меняя ранга:
Третью строку умножим на (–2) и прибавим к четвертой:

Видим, что ранги основной и расширенной матриц равны 4, причем ранг совпадает с числом неизвестных, следовательно, система имеет единственное решение:
;
x 4 = 10- 3x 1 – 3x 2 – 2x 3 = 11.

Пример 3 . Исследовать систему на совместность и найти решение, если оно существует.

Решение . Составляем расширенную матрицу системы.

Переставляем первые два уравнения, чтобы в левом верхнем углу была 1:
Умножая первую строку на (-1), складываем ее с третьей:

Умножим вторую строку на (-2) и прибавим к третьей:

Система несовместна, так как в основной матрице получили строку, состоящую из нулей, которая вычеркивается при нахождении ранга, а в расширенной матрице последняя строка останется, то есть r B > r A .

Задание . Исследовать данную систему уравнений на совместность и решить ее средствами матричного исчисления .
Решение

Пример . Доказать совместимость системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса ; 2) методом Крамера . (ответ ввести в виде: x1,x2,x3)
Решение :doc :doc :xls
Ответ: 2,-1,3.

Пример . Дана система линейных уравнений. Доказать ее совместность. Найти общее решение системы и одно частное решение.
Решение
Ответ: x 3 = - 1 + x 4 + x 5 ; x 2 = 1 - x 4 ; x 1 = 2 + x 4 - 3x 5

Задание . Найти общее и частное решения каждой системы.
Решение. Исследуем эту систему по теореме Кронекера-Капелли.
Выпишем расширенную и основную матрицы:

1 1 14 0 2 0
3 4 2 3 0 1
2 3 -3 3 -2 1
x 1 x 2 x 3 x 4 x 5

Здесь матрица А выделена жирным шрифтом.
Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
0 -1 40 -3 6 -1
3 4 2 3 0 1
2 3 -3 3 -2 1

Умножим 2-ую строку на (2). Умножим 3-ую строку на (-3). Добавим 3-ую строку к 2-ой:
0 -1 40 -3 6 -1
0 -1 13 -3 6 -1
2 3 -3 3 -2 1

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
0 0 27 0 0 0
0 -1 13 -3 6 -1
2 3 -3 3 -2 1

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), причем этот минор принадлежит как основной матрице, так и расширенной, следовательно rang(A) = rang(B) = 3. Поскольку ранг основной матрицы равен рангу расширенной, то система является совместной .
Этот минор является базисным. В него вошли коэффициенты при неизвестных x 1 ,x 2 ,x 3 , значит, неизвестные x 1 ,x 2 ,x 3 – зависимые (базисные), а x 4 ,x 5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор.
0 0 27 0 0 0
0 -1 13 -1 3 -6
2 3 -3 1 -3 2
x 1 x 2 x 3 x 4 x 5
Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
27x 3 =
- x 2 + 13x 3 = - 1 + 3x 4 - 6x 5
2x 1 + 3x 2 - 3x 3 = 1 - 3x 4 + 2x 5
Методом исключения неизвестных находим:
Получили соотношения, выражающие зависимые переменные x 1 ,x 2 ,x 3 через свободные x 4 ,x 5 , то есть нашли общее решение :
x 3 = 0
x 2 = 1 - 3x 4 + 6x 5
x 1 = - 1 + 3x 4 - 8x 5
неопределенной , т.к. имеет более одного решения.

Задание . Решить систему уравнений.
Ответ :x 2 = 2 - 1.67x 3 + 0.67x 4
x 1 = 5 - 3.67x 3 + 0.67x 4
Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Система является неопределенной

  • Системы m линейных уравнений с n неизвестными.
    Решение системы линейных уравнений — это такое множество чисел {x 1 , x 2 , …, x n }, при подстановке которых в каждое из уравнений системы получается верное равенство.
    где a ij , i = 1, …, m; j = 1, …, n — коэффициенты системы;
    b i , i = 1, …, m — свободные члены;
    x j , j = 1, …, n — неизвестные.
    Вышеприведенная система может быть записана в матричном виде: A · X = B ,




    где (A |B ) — основная матрица системы;
    A — расширенная матрица системы;
    X — столбец неизвестных;
    B — столбец свободных членов.
    Если матрица B не является нуль-матрицей ∅, то данная система линейных уравнений называется неоднородной.
    Если матрица B = ∅, то данная система линейных уравнений называется однородной. Однородная система всегда имеет нулевое (тривиальное) решение: x 1 = x 2 = …, x n = 0 .
    Совместная система линейных уравнений — это имеющая решение система линейных уравнений.
    Несовместная система линейных уравнений — это не имеющая решение система линейных уравнений.
    Определённая система линейных уравнений — это имеющая единственное решение система линейных уравнений.
    Неопределённая система линейных уравнений — это имеющая бесконечное множество решений система линейных уравнений.
  • Системы n линейных уравнений с n неизвестными
    Если число неизвестных равно числу уравнений, то матрица – квадратная. Определитель матрицы называется главным определителем системы линейных уравнений и обозначается символом Δ.
    Метод Крамера для решения систем n линейных уравнений с n неизвестными.
    Правило Крамера.
    Если главный определитель системы линейных уравнений не равен нулю, то система совместна и определена, причем единственное решение вычисляется по формулам Крамера:
    где Δ i — определители, получаемые из главного определителя системы Δ заменой i -го столбца на столбец свободных членов. .
  • Системы m линейных уравнений с n неизвестными
    Теорема Кронекера−Капелли .


    Для того чтобы данная система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу расширенной матрицы системы, rang(Α) = rang(Α|B) .
    Если rang(Α) ≠ rang(Α|B) , то система заведомо не имеет решений.
    Eсли rang(Α) = rang(Α|B) , то возможны два случая:
    1) rang(Α) = n (числу неизвестных) − решение единственно и может быть получено по формулам Крамера;
    2) rang(Α) < n − решений бесконечно много.
  • Метод Гаусса для решения систем линейных уравнений


    Составим расширенную матрицу (A |B ) данной системы из коэффициентов при неизвестных и правых частей.
    Метод Гаусса или метод исключения неизвестных состоит в приведении расширенной матрицы (A |B ) с помощью элементарных преобразований над ее строками к диагональному виду (к верхнему треугольному виду). Возвращаясь к системе уравнений, определяют все неизвестные.
    К элементарным преобразованиям над строками относятся следующие:
    1) перемена местами двух строк;
    2) умножение строки на число, отличное от 0;
    3) прибавление к строке другой строки, умноженной на произвольное число;
    4) выбрасывание нулевой строки.
    Расширенной матрице, приведенной к диагональному виду, соответствует линейная система, эквивалентная данной, решение которой не вызывает затруднений. .
  • Система однородных линейных уравнений.
    Однородная система имеет вид:

    ей соответствует матричное уравнение A · X = 0 .
    1) Однородная система всегда совместна, так как r(A) = r(A|B) , всегда существует нулевое решение (0, 0, …, 0).
    2) Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r = r(A) < n , что равносильно Δ = 0.
    3) Если r < n , то заведомо Δ = 0, тогда возникают свободные неизвестные c 1 , c 2 , …, c n-r , система имеет нетривиальные решения, причем их бесконечно много.
    4) Общее решение X при r < n может быть записано в матричном виде следующим образом:
    X = c 1 · X 1 + c 2 · X 2 + … + c n-r · X n-r ,
    где решения X 1 , X 2 , …, X n-r образуют фундаментальную систему решений.
    5) Фундаментальная система решений может быть получена из общего решения однородной системы:

    ,
    если последовательно полагать значения параметров равными (1, 0, …, 0), (0, 1, …, 0), …, (0, 0, …,1).
    Разложение общего решения по фундаментальной системе решений — это запись общего решения в виде линейной комбинации решений, принадлежащих к фундаментальной системе.
    Теорема . Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.
    Итак, если определитель Δ ≠ 0, то система имеет единственное решение.
    Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.
    Теорема . Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r(A) < n .
    Доказательство :
    1) r не может быть больше n (ранг матрицы не превышает числа столбцов или строк);
    2) r < n , т.к. если r = n , то главный определитель системы Δ ≠ 0, и, по формулам Крамера, существует единственное тривиальное решение x 1 = x 2 = … = x n = 0 , что противоречит условию. Значит, r(A) < n .
    Следствие . Для того чтобы однородная система n линейных уравнений с n неизвестными имела ненулевое решение, необходимо и достаточно, чтобы Δ = 0.


Новое на сайте

>

Самое популярное