Домой Проекты домов Хроматографический анализ газов растворенных в трансформаторном масле. Методические указания по контролю состояния трансформаторов тока на основе хроматографического анализа растворенных газов (харг) в масле

Хроматографический анализ газов растворенных в трансформаторном масле. Методические указания по контролю состояния трансформаторов тока на основе хроматографического анализа растворенных газов (харг) в масле

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ
РАО «ЕЭС РОССИИ»

ДЕПАРТАМЕНТ НАУЧНО-ТЕХНИЧЕСКОЙ ПОЛИТИКИ И РАЗВИТИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ДИАГНОСТИКЕ
РАЗВИВАЮЩИХСЯ ДЕФЕКТОВ
ТРАНСФОРМАТОРНОГО ОБОРУДОВАНИЯ
ПО РЕЗУЛЬТАТАМ
ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ГАЗОВ,
РАСТВОРЕННЫХ В МАСЛЕ

РД 153-34.0-46.302-00

МОСКВА, 2001

РАЗРАБОТАНО: Департаментом научно-технической политики и развития РАО «ЕЭС России», Научно-исследовательским институтом электроэнергетики (АО ВНИИЭ), раздел - совместно с ЗАО Московский завод «Изолятор» им. А. Баркова

ИСПОЛНИТЕЛИ: Ю.Н. Львов, Т.Е. Касаткина, Б.В. Ванин, М.Ю. Львов, В. С. Богомолов, Ю.М. Сапожников - (АО ВНИИЭ), С.Д. Кассихин, Б.П. Кокуркин, С.Г. Радковский, А.З. Славинский - (ЗАО «МОСИЗОЛЯТОР»), К.М. Антипов, В.В. Смекалов - (Департамент научно-технической политики и развития РАО «ЕЭС России»)

УТВЕРЖДАЮ: Начальник Департамента научно-технической политики и развития РАО «ЕЭС России»

Ю.Н. Кучеров

12.12.2000 г.

СПИСОК ИСПОЛЬЗОВАННЫХ ОБОЗНАЧЕНИЙ

М Ai - предел обнаружения в масле i-го газа, %об;

A 0 i - начальное значение концентрации i -г o газа, %об;

A i - измеренное значение концентрации i -г o газа, %об;

Агр i - граничная концентрация i -г o газа, %об;

a i - относительная концентрация i -г o газа;

a maxi - максимальная относительная концентрация i -г o газа;

F Li - интегральная функция распределения;

P Li - вероятность;

N- общее число трансформаторов;

L - интервал измерения концентрации i -г o газа;

n Li - число трансформаторов с концентрацией газа А (1-1) i < А 1i ;

V абс i - абсолютная скорость нарастания i -г o газа, %об/мес;

Am i , A (m -1) i - два последовательных измерения концентрации i -г o газа, %об;

Td - периодичность диагностики, мес.;

V отн i - относительная скорость нарастания i -г o газа, %/мес;

b - коэффициент кратности последовательных измерений (принимать b = 5);

T 1 d - минимальное время до повторного отбора пробы масла, мес.;

Аг i - концентрация i -г o газа в равновесии с газовой фазой, %об;

B i - коэффициент растворимости i -г o газа в масле

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ДИАГНОСТИКЕ
РАЗВИВАЮЩИХСЯ ДЕФЕКТОВ ТРАНСФОРМАТОРНОГО
ОБОРУДОВАНИЯ ПО РЕЗУЛЬТАТАМ
ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ГАЗОВ,
РАСТВОРЕННЫХ В МАСЛЕ

РД 153-34.0-46.302-00

Срок действия установлен

с 01.01.2001 г.

до 01.01.2011 г.

Настоящие Методические указания составлены на основе накопленного в России опыта применения «Методических указаний по диагностике развивающихся дефектов по результатам хроматографического анализа газов, растворенных в масле силовых трансформаторов» РД 34.46.302-89 (М: СПО Союзтехэнерго, 1989), с учетом рекомендаций публикации МЭК 599 и СИГРЭ и вводятся взамен упомянутого выше РД 34.46.302-89 и взамен противоаварийного циркуляра Ц-06-88(Э) «О мерах по повышению надежности герметичных вводов 110-750 кВ» от 27.07.1988 г.

Настоящие Методические указания распространяются на трансформаторы напряжением 110 кВ и выше, блочные трансформаторы, трансформаторы собственных нужд с любым видом защиты масла от атмосферы и высоковольтные герметичные вводы напряжением 110 кВ и выше, залитые трансформаторным маслом любой марки.

В Методических указаниях изложены: критерии диагностики развивающихся в трансформаторах дефектов (критерий ключевых газов, критерий граничных концентраций газов, критерий отношения концентраций пар газов для определения вида и характера дефекта, критерий скорости нарастания газов в масле); эксплуатационные факторы, влияющие на результаты АРГ; дефекты, обнаруживаемые в трансформаторах с помощью АРГ; основы диагностики эксплуатационного состояния трансформаторов по результатам АРГ; определение наличия дефекта в высоковольтных герметичных вводах по результатам анализа растворенных в масле газов.

Вероятность совпадения прогнозируемого и фактического дефектов в трансформаторах при использовании настоящих Методических указаний - 95 %.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Хроматографический анализ растворенных в масле газов проводится в соответствии с методикой «Методические указания по подготовке и проведению хроматографического анализа газов, растворенных в масле силовых трансформаторов» (РД 34.46.303-98), обеспечивающей:

1.1.1 Определение концентраций следующих газов, растворенных в масле: водорода (H 2 ), метана (СН 4), ацетилена (C 2 H 2 ), этилена (C 2 H 4 ), этана (C 2 H 6 ), оксида углерода (СО), диоксида углерода (CO 2 ).

Граничные концентрации растворенных в масле газов

Концентрации газов, %об.

Оборудование

Н 2

СН 4

С 2 Н 2

С 2 Н 4

С 2 Н 6

СО

СО 2

Трансформаторы напряжением 110-500 кВ

0,01

0,01

0,001

0,01

0,005

Трансформаторы напряжением 750 кВ

0,003

0,002

0,001

0,002

0,001

0,05

0,40

Реакторы напряжением 750 кВ

0,01

0,003

0,001

0,001

0,002

0,05

0,40

* для СО - в числителе приведено значение для трансформаторов с азотной или пленочной защитами масла, в знаменателе - для трансформаторов со свободным дыханием; для СО 2 - в числителе приведены значения для трансформато ров со свободным дыханием при сроке эксплуатации до 10 лет, в знаменателе - свыше 10 лет, в скобках приведены те же данные для трансформаторов с пленочной или азотной защитами масла

5. ОПРЕДЕЛЕНИЕ ВИДА И ХАРАКТЕРА РАЗВИВАЮЩЕГОСЯ ДЕФЕКТА ПО КРИТЕРИЯМ ОТНОШЕНИЙ КОНЦЕНТРАЦИЙ ПАР ГАЗОВ

Вид и характер развивающихся в трансформаторе повреждений определяется по отношению концентраций следующих газов: Н 2 , СН 4 , С 2 Н 2 , С 2 Н 4 и С 2 Н 6 .

Дефект

Основные хроматографические признаки дефекта

Механические примеси

Образование углеродосодержащих частиц вследствие разрядов - ацетилен. Появление незавершенных искровых разрядов - водород. Возможно отложение загрязнений по поверхностям и прорастание по ним разряда - водород и ацетилен.

Острые края деталей в масле

Появление незавершенных искровых разрядов - водород. Накопление продуктов деструкции масла по поверхностям и прорастание по ним разряда - водород и ацетилен.

Нарушение контактных соединений

Появление искрового разряда в масле - водород и ацетилен. Отложение продуктов деструкции масла по поверхностям и прорастание по ним разряда - водород и ацетилен. Накопление продуктов деструкции масла - водород и ацетилен.

Ослабление контактных соединений верхней контактной шпильки

Термическая деструкция масла (осмоление) - метан, этан.

Локальные дефекты остова

Микроразряды в остове - ацетилен и водород.

Литература

Рассчитаем величины абсолютных скоростей нарастания концентраций каждого газа:

Так как максимальная абсолютная скорость нарастания у водорода, то Т 1 d определяем по ней:

T 1 d = 5 ´ 5 ´ 10 4 /0,0125 = 0,2 мес., т.е. 6 дней

Фактически следующий отбор пробы масла и АРГ были проведены через 7 дней и получены следующие концентрации газов:

4-й анализ СО 2 = 0,15; СО = 0,02; СН 4 = 0,018; С 2 Н 4 = 0,051; С 2 Н 2 = 0,0035; С 2 Н 6 = 0,0053; Н 2 = 0,01.

По данным этого анализа в трансформаторе подтвердилось наличие быстроразвивающегося дефекта термического характера, не затрагивающего твердую изоляцию - «термический дефект высокой температуры, > 700 °С» и относящегося к 1 группе дефектов «Перегревы токоведущих соединений и элементов конструкции остова».

Трансформатор был выведен в ремонт. Во время ремонта в нем было обнаружено выгорание меди отвода обмотки 330 кВ, что подтвердило правильность поставленного диагноза.

Пример 2 .

В трансформаторе ТДТГ - 10000/110 после срабатывания газовой защиты на отключение (отбор пробы масла был проведен из бака трансформатора) определен следующий состав растворенных в масле газов (концентрации в %об.):

СО 2 = 0,45; СО = 0,04; СН 4 = 0,021; С 2 Н 4 = 0,027; С 2 Н 2 = 0,134; С 2 Н 6 = 0,006; Н 2 = 0,20.

Изрезультатов анализа следует, что концентрации метана и этилена более, чем в 2 раза превышают соответствующие граничные значения (табл. РД), концентрация водорода в 20 раз превышает граничное значение, а ацетилена - более, чем в 100 раз.

Анализ условий эксплуатации за предшествующий период показал, что отсутствуют факторы, которые могли бы вызвать рост концентраций углеводородных газов (п. ).

По полученным концентрациям углеводородных газов определим характер развивающегося в трансформаторе дефекта по таблице текста РД:

На основании полученных данных прогнозируется дефект электрического характера - «разряды большой мощности».

Трансформатор был выведен в ремонт, в нем был обнаружен обрыв токопровода переключателя.

Пример 3.

В трансформаторе ТДТН-31500/110 газовая защита сработала на сигнал.

Отобрали пробу газа из газового реле и пробу масла из бака трансформатора. Определили концентрации растворенных в масле газов и газа из газового реле; результаты анализов приведены в таблице:

Характеристика пробы

Концентрации газов, %об.

Н 2

СН 4

С 2 Н 4

С 2 Н 6

С 2 Н 2

СО 2

СО

Масло из бака

0,016

0,0024

0,015

0,0006

0,040

0,162

0,05

Газ из реле, (Ас i )

31,4

4,42

1,52

0,03

3,34

0,58

5,78

Расчетное значение газа из реле, (Ari )

0,32

0,056

0,009

0,00025

0,033

0,15

0,42

1. По концентрациям углеводородных газов в масле из бака трансформатора определим характер развивающегося в нем дефекта по таблице текста РД:

По критерию отношения в трансформаторе прогнозируется дефект электрического характера - дуговой разряд, затрагивающий твердую изоляцию.

2. По концентрациям газов, растворенных в масле бака трансформатора, рассчитаем концентрации этих же газов, соответствующих равновесному состоянию с газовой фазой (Ari ) по формуле РД и результаты расчета занесем в третью строку таблицы:

При сравнении концентраций Ari и Aci по каждому газу (строка 2 и 3 таблицы примера ) получаем неравенство: Ari < Aci , т.е. можно заключить, что газ в реле выделился в неравновесных условиях в результате быстро развивающегося дефекта (дуговой разряд, затрагивающий твердую изоляцию).

Было дано заключение о выводе трансформатора из работы. При осмотре был обнаружен пробой витковой изоляции.

Приложение 3

ОПРЕДЕЛЕНИЕ ГРАФИЧЕСКИМ СПОСОБОМ РАЗВИВАЮЩИХСЯ В ТРАНСФОРМАТОРАХ ДЕФЕКТОВ ПО РЕЗУЛЬТАТАМ АРГ

Вид развивающихся в трансформаторах дефектов можно ориентировочно определить графически по основным газам: водороду, метану, этилену и ацетилену.

А. Построение графиков по относительным концентрациям.

Основной газ определяется по п. РД.

1. Для дефектов электрического характера основным газом может быть водород или ацетилен (п. текста РД).

На рис. - - изображены графики дефектов электрического характера.

2. Для дефектов термического характера (перегревы при плохих контактах, токах утечки, от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах и винтах и т.п.) основным газом является метан или этилен в зависимости от температуры нагрева в зоне развития дефекта (см. п. текста РД).

На рис. - изображены графики дефектов термического характера. Графики строятся следующим образом:

По результатам хроматографического анализа масла (А i ) по формуле настоящих РД рассчитать относительные концентрации (a i ) водорода и углеводородных газов;

Определить основной газ в данном анализе (по расчетным относительным концентрациям максимальное значение a maxi соответствует основному газу);

Определить величину отношения a i / a maxi по углеводородным газам и водороду, причем для основного газа это отношение равно единице;

По оси X отложить пять равных отрезков и обозначить полученные точки соответствующими газами в следующей последовательности:

По оси Y отложить отрезок произвольной величины и обозначить его цифрой «1»;

Полученные точки соединить прямыми линиями;

Построенный график сравнить с графиками рис. - и определить характер дефекта.

При сравнении графиков необходимо учитывать модальность и основной газ.

Б. Построение графиков по абсолютным концентрациям

1. По результатам хроматографического анализа масла газ с максимальной концентрацией (Amax i ) принимается за основной газ.

2. Определить величину отношения измеренной концентрации газового компонента к максимальной концентрации (A i / Amax i ), причем для основного газа это отношение равно единице.

3. Далее для каждого газа на оси ординат отложить соответствующие величины отношения A i / Amax i для каждого газа, построить график в соответствии с п. А и определить характер дефекта.

Рекомендуется для построения графиков использовать только такие результаты АРГ, в которых концентрации водорода и углеводородных газов в несколько раз превышают соответствующие граничные значения (при этом возможно отсутствие в масле ацетилена и/или наличие низких концентраций водорода).

Пример 1

В трансформаторе ТРДЦН-63000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,004 %об, СН 4 = 0,084 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,02 %об, С 2 Н 6 = 0,011 %об, СО = 0,05 %об, СО 2 = 0,48 %об.

I ) для каждого газа:

а Н2 = 0,004/0,01 = 0,4, а СН4 = 0,084/0,01 = 8,4, а С2Н2 = 0, а С2Н4 = 0,02/0,01 = 2,0, а С2Н6 = 0,011/0,005 = 2,2

8,4 = а СН4 > а С2Н6 > а С2Н4 > а Н2 , т.е. основной газ - метан

Y для каждого газа

СН 4 = 1, Н 2 = 0,4/8,4 = 0,05, С 2 Н 4 = 2/8,4 = 0,24, С 2 Н 2 = 0, С 2 Н 6 = 2,2/8,4 = 0,26

4. Строим график (рис. РД):

Рис. 4.1. График дефекта термического характера в диапазоне средних температур, вызванного подгаром контактов избирателя

Пример 2

В автотрансформаторе АТДЦТГ-240000/220 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,01 %об, СН 4 = 0,09 %об, С 2 Н 2 = 0,008 %об, С 2 Н 4 = 0,167 %об, С 2 Н 6 = 0,03 %об, СО = 0,019 %об, СО 2 = 0,24 %об.

а i ) для каждого газа:

а Н2 = 0,01/0,01 = 1, а СН4 = 0,09/0,01 = 9, а С2Н2 = 0,008/0,001 = 8, а С2Н4 = 0,167/0,01 = 16,7, = 0,03/0,005 = 6,0

2. По полученным относительным концентрациям определяем основной газ:

16,7 = а С2Н4 > а СН4 > а С2Н2 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 4 = 1, Н 2 = 1/16,7 = 0,06, СН 4 = 9/16,7 = 0,54, С 2 Н 2 = 8/16,7 = 0,45, С 2 Н 6 = 6,0/16,7 = 0,36

4. Строим график (рис. ).

5. По основному газу С 2 Н 4 находим график рис. , Приложение , похожий на построенный график (рис. ). Следовательно, в автотрансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

СО 2 /СО = 0,24/0,019 = 12,6, следовательно, дефектом не затронута твердая изоляция.

По результату этого анализа была дана рекомендация вывести автотрансформатор в ремонт в ближайшее время, но руководство системы оставило его в работе под контролем АРГ.

Автотрансформатор проработал еще 4 мес. и был выведен в ремонт.

Во время ремонта в нем было обнаружено замыкание прессующего кольца обмотки СН на прессующее кольцо обмотки НН через упавший стакан домкрата.

Рис. 4.2. График дефекта термического характера - высокотемпературный перегрев, вызванный короткозамкнутым контуром в остове

Пример 3

В автотрансформаторе АТДЦТН-250000/500 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,03 %об, СН 4 = 0,18 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,3 %об, С 2 Н 6 = 0,043 %об, СО = 0,016 %об, СО 2 = 0,19 %об.

1. Определяем относительные концентрации (a i ) для каждого газа:

а Н2 = 0,03/0,01 = 3, а СН4 = 0,18/0,01 = 18, а С2Н2 = 0, а С2Н4 = 0,3/0,01 = 30, а С2Н6 = 0,043/0,005 = 8,6

2. По полученным относительным концентрациям определяем основной газ:

30 = а С2Н4 > а СН4 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 4 = 1, Н 2 = 3/30 = 0,1, СН 4 = 18/30 = 0,6, С 2 Н 2 = 0, С 2 Н 6 = 8,6/30 = 0,29

4. Строим график (рис. ).

5. По основному газу С 2 Н 4 находим график рис. , Приложение , похожий на построенный график (рис. ). Следовательно, в автотрансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО = 0,19/0,016 = 11,9 < 13 (см. п. . РД), следовательно, дефектом не затронута твердая изоляция.

По результату этого анализа была дана рекомендация вывести автотрансформатор в ремонт. Во время ремонта в нем был обнаружен короткозамкнутый контур - касание нижней консоли с шипом.

Рис. 4.3. График дефекта термического характера - высокотемпературный нагрев (> 700 °С), вызванный касанием нижней консоли с шипом

Пример 4

В трансформаторе ТДТН-40000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,011 %об, СН 4 = 0,036 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,152 %об, С 2 Н 6 = 0,039 %об, СО = 0,04 %об, СО 2 = 0,45 %об.

1. Определяем относительные концентрации (а i ) для каждого газа:

а Н2 = 0,011/0,1 = 1,1, а СН4 = 0,036/0,01 = 3,6, а С2Н2 = 0, а С2Н4 = 0,152/0,01 = 15,2, а С2Н6 = 0,039/0,005 = 7,8

2. По полученным относительным концентрациям определяем основной газ:

15,2 = а С2Н4 > а С2Н6 > а СН4 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 4 = 1, Н 2 = 1,1/15,2 = 0,072, СН 4 = 3,6/15,2 = 0,24, С 2 Н 2 = 0, С 2 Н 6 = 7,8/15,2 = 0,5

4. Строим график (рис. ).

5. По основному газу С 2 Н 4 находим график рис. , Приложение , похожий на построенный график (рис. ). Следовательно, в трансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО = 0,45/0,04 = 11,25 < 13 (см. п. . РД), следовательно, дефектом не затронута твердая изоляция.

По результату этого анализа была дана рекомендация вывести трансформатор в ремонт. Во время ремонта в нем был обнаружен подгар контактов переключателя.

Рис. 4.4. График дефекта термического характера - высокотемпературный нагрев (> 700 °С), вызванный подгаром контактов переключателя

Пример 5

В автотрансформаторе ОДТГА-80000/220 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,097 %об, СН 4 = 0,019 %об, С 2 Н 2 = 0,013 %об, С 2 Н 4 = 0,024 %об, С 2 Н 6 = 0,0023 %об, СО = 0,064 %об, СО 2 = 0,27 %об.

1. Определяем относительные концентрации (а i ) для каждого газа:

а Н2 = 0,097/0,01 = 9,7, а СН4 = 0,019/0,01 = 1,9, а С2Н2 = 0,013/0,001 = 13 , а С2Н4 = 0,024/0,01 = 2,4, а С2Н6 = 0,0023/0,005 = 0,46

2. По полученным относительным концентрациям определяем основной газ:

5.3 . РД), следовательно, дефектом затронута твердая изоляция.

По результату этого анализа была дана рекомендация вывести автотрансформатор в ремонт в ближайшее время.

Автотрансформатор был выведен в ремонт. Во время ремонта в нем было обнаружено: выгорание изоляции шпилек, касание стягивающих шпилек консоли, выгорание металла шпильки.

Рис. 4.5. График дефекта электрического характера (дуга), вызванного короткозамкнутым контуром в остове

Пример 6 (см. Приложение , пример для случая, когда газовая защита сработала на отключение)

В трансформаторе ТДТГ-10000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,20 %об, СН 4 = 0,021 %об, С 2 Н 2 = 0,134 %об, С 2 Н 4 = 0,027 %об, С 2 Н 6 = 0,0006 %об, СО = 0,04 %об, СО 2 = 0,45 %об.

1. Определяем относительные концентрации (а i ) для каждого газа:

а Н2 = 0,20/0,01 = 20, а СН4 = 0,021/0,01 = 2,1, а С2Н2 = 0,134/0,001 = 134 , а С2Н4 = 0,027/0,01 = 2,7, а С2Н6 = 0,0006/0,005 = 0,12

2. По полученным относительным концентрациям определяем основной газ:

134 = а С2Н2 > а Н2 > а С2Н4 > а СН4 > а С2Н6 , т.е. основной газ - ацетилен

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 2 = 1, Н 2 = 20/134 = 0,15, СН 4 = 2,1/134 = 0,016, С 2 Н 6 = 0,12/134 = 0,12, С 2 Н 4 = 2,7/134 = 0,02

4. Строим график (рис. ).

5. По основному газу С 2 Н 2 находим график рис. , Приложение , похожий на построенный график (рис. ). Следовательно, в трансформаторе по данным АРГ прогнозируется дефект электрического характера - дефект, вызванный дугой.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО = 0,45/0,04 = 11,25 < 13 (см. п. . РД), следовательно, дефектом не затронута твердая изоляция.

По результату этого анализа была дана рекомендация вывести трансформатор в ремонт.

Во время ремонта в нем обнаружили обрыв токопровода переключателя.

Рис. 4.6. График дефекта электрического характера (дуга)

Пример 7

В трансформаторе ТДТН-63000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,053 %об, СН 4 = 0,02 %об, С 2 Н 2 = 0,0013 %об, С 2 Н 4 = 0,049 %об, С 2 Н 6 = 0,009 %об (концентрации оксида и диоксида углерода не определялись).

1. Определяем относительные концентрации (a i ) для каждого газа:

а Н2 = 0,053/0,01 = 5,3, а СН4 = 0,02/0,01 = 2,0, а С2Н2 = 0,0013/0,001 = 1,3 , а С2Н4 = 0,049/0,01 = 4,9, а С2Н6 = 0,009/0,005 = 1,8

2. По полученным относительным концентрациям определяем основной газ:

5,3 = а Н2 > а С2Н4 > а СН4 > а С2Н6 > а С2Н2 , т.е. основной газ - водород

3. Определяем величины отрезков по оси

Рис. 4.7. График дефекта электрического характера (искрение)

Пример 8

В трансформаторе ТДЦ-400000/330 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,27 %об, СН 4 = 0,025 %об, С 2 Н 2 = 0,024 %об, С 2 Н 4 = 0,030 %об, С 2 Н 6 = 0,007 %об (концентрации оксида и диоксида углерода не определялись).

1. Определяем относительные концентрации (a i ) для каждого газа:

а Н2 = 0,27/0,01 = 27,0, а СН4 = 0,025/0,01 = 2,5, а С2Н2 = 0,024/0,001 = 24,0 , а С2Н4 = 0,030/0,01 = 3,0, а С2Н6 = 0,007/0,005 = 1,4

2. По полученным относительным концентрациям определяем основной газ:

27 = а Н2 > а С2Н2 > а С2Н4 > а СН4 > а С2Н62 , т.е. основной газ - водород

3. Определяем величины отрезков по оси

Компания ООО НПФ «Мета-хром» производит оборудование «Кристаллюкс-4000 М», которое используется для качественного и точного хроматографического анализа трансформаторного масла. При установке оборудования и внедрении методики анализа, специалисты компании « Мета-хром» обучают сотрудников заказчика работе с хроматографическим оборудованием. Сроки доставки, комплектация и стоимость комплекса напрямую зависят от количества и вида предполагаемых исследований, а также от имеющихся в распоряжении заказчика приборов.

Хроматографический анализ
трансформаторного масла

Аварии в энергосистемах — явление неприятное и опасное. В целях предотвращения подобных ситуаций, необходимо производить комплекс мероприятий, направленных на своевременное выявление возможных проблем в работе масляного силового оборудования. Именно ранняя диагностика позволяет избежать аварий и свести все риски к минимуму. Использование разработки компании «Мета-хром» позволяет проводить комплексные исследования масла с применением разных хроматографических методов на предмет содержания в нем следующих элементов:

  • Элегаз (РД-16.066-05).
  • Полихлорбифенилы (ГОСТ Р МЭК 61619, ЕРА8082А).
  • Производные фурана (МКХf 01-99, МИ-29.09.2011).
  • Ионол (МИ-29.09.2011, МКХi 01-99).
  • Воздух и вода (РД34.46.107-95).
  • Растворенные газы (ASTM D 3216, CEI/IEC60567, РД34.46.502, РД34.46.303-98).

В среднем, на хроматографический анализ уходит около 30 минут. В зависимости от конкретной задачи, комплектация комплекса может быть изменена.

Оборудование

Хроматографический комплекс может состоять из одного или нескольких хроматографов, в зависимости от количества исследуемого вещества и перечня составляющих компонентов. В комплектацию хроматографического комплекса входят расходные материалы и вспомогательное оборудование. Необходимость нескольких дополнительных приборов обусловлена различием методов хроматографического анализа и обеспечением максимального удобства эксплуатации оборудования. Так, вспомогательные устройства значительно облегчают аналитический процесс, потому что не требуется переустанавливать детекторы и колонки, переключать газы, обеспечивать обязательную градуировку после перестановки и т. д. Для выхода комплекса на рабочий режим, с момента включения должно пройти всего 30 минут. Он практичен и надежен в использовании, поскольку его не нужно постоянно перенастраивать и как-либо менять, в зависимости от вида проводимого анализа.

Основные требования к лаборатории

Хроматографический анализ газов растворенных в масле, является специальным методом, служащим для обнаружения повреждений и дефектов конструктивных узлов электрооборудования, но практически не информирующем о качестве и состоянии самого масла. Хроматографический анализ (ХАРГ) позволяет:

  • отслеживать развитие процессов в оборудовании,
  • выявлять дефекты на ранней стадии их развития, не обнаруживаемые традиционными способами,
  • определять предполагаемый характер дефекта и степень имеющегося повреждения
  • ориентироваться при определении места повреждения.
Для оценки состояния маслонаполненного оборудования используются газы: водород (Н2), метан (CH4), этан (C2H6), этилен (C2H4), ацетилен (С2Н2), угарный газ (CO), углекислый газ (CO2). Кроме этого, всегда присутствуют кислород и азот, а их концентрация изменяется в зависимости от герметичности корпуса трансформатора и могут выделяться такие газы как пропан, бутан, бутен и другие, но их исследование в диагностических целях не получило широкого распространения.

Состояние оборудования оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Важно различать нормальные и чрезмерные объемы газа. Нормальное старение или газовая генерация изменяется в зависимости от конструкции трансформатора, нагрузки и типа изоляционных материалов.

В заимосвязь основных газов и наиболее характерных видов дефектов.

Водород (Н2) Дефекты электрического характера: частичные разряды, искровые и дуговые разряды
Метан (CH4) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции в диапазоне температур (400-600)°С
или нагрев масла и бумажно-масляной изоляции, сопровождающийся разрядами;
Этан (C2H6) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции в диапазоне температур (300-400)°С;
Этилен (C2H4) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции выше 600°С
Ацетилен (С2Н2) Дефекты электрического характера: электрическая дуга, искрение
У гарный газ (CO) Дефекты термического характера: старение и увлажнение масла и/или твердой изоляции;
Углекислый газ (CO2) Дефекты термического характера: старение и увлажнение масла и/или твердой изоляции;
нагрев твердой изоляции


Дефекты трансформаторов, определяемые с помощью хроматографического анализа:

Наименование дефектов

Основные газы Характерные газы
Перегревы токоведущих соединений

С 2 Н 4 - в случае нагрева масла
и бумажно-масляной
изоляции выше 600°С

Н 2 , С Н 4 и С 2 Н 6

- нагрев и выгорание контактов переключающих устройств;
- ослабление и нагрев места крепления электростатического экрана;
- обрыв электростатического экрана;
- ослабление винтов компенсаторов отводов НН;
- ослабление и нагрев контактных соединений отвода НН и шпильки проходного изолятора;
- лопнувшая пайка элементов обмотки: замыкание параллельных и элементарных проводников обмотки и др

С 2 Н 2 - в случае перегрева масла,
вызванного дуговым разрядом.

Перегревы элементов конструкции остова.
- неудовлетворительная изоляция листов электротехнической стали;
- нарушение изоляции стяжных шпилек или накладок, ярмовых балок с образованием короткозамкнутого контура;
- общий нагрев и недопустимый местный нагрев от магнитных полей рассеяния в ярмовых балках, бандажах,
рессующих кольцах и винтах;
- неправильное заземление магнитопровода;
- нарушение изоляции амортизаторов и шипов поддона реактора, домкратов и прессующих колец
при распрессовке и др.
Частичные разряды Н 2 СН 4 и С 2 Н 2
с малым содержанием
Искровые и дуговые разряды Н 2 или С 2 Н 2 СН 4 и С 2 Н 2
с любым содержанием
Ускоренное старении и/или увлажнение твердой изоляции СО и СO 2
Перегрев твердой изоляции СO 2

Для получения объективных результатов хроматографического анализа трансформаторного масла необходимо квалифицированно произвести отбор проб из маслонаполненного оборудования. Более подробные требования по отбору проб трансформаторного масла представлены в разделе Отбор проб масла

Режим регулирования напряжения.

Устройства регулирования напряжения под нагрузкой (РПН) должны работать, как правило, в автоматическом режиме. Допускается дистанционное переключение РПН с пульта управления. На трансформаторах с переключением без возбуждения (ПБВ) правильность выбора коэффициента трансформации должна проверяться два раза в год - перед зимним максимумом и летним минимумом нагрузки.

Аварийные режимы.

При отключении трансформатора защитой, не связанной с его внутренними повреждениями, например, максимальной токовой защитой, трансформатор может быть вновь включен в работу.

При отключении трансформатора защитами от внутренних повреждений (газовой, дифференциальной) этот трансформатор включается в работу только после осмотра, испытаний, анализа масла, анализа газа из газового реле и устранения выявленных дефектов.

При срабатывании газового реле на сигнал производится наружный осмотр трансформатора и отбор газа из газового реле для анализа. Если газ в реле негорючий, при наружном осмотре признаки повреждения не обнаружены, а отключение трансформатора вызывает недоотпуск электроэнергии, трансформатор может быть оставлен в работе до выяснения причин срабатывания газового реле на сигнал. После выяснения этих причин оценивается возможность дальнейшей нормальной эксплуатации трансформатора.

Аварийный вывод трансформатора из работы осуществляется:
при сильном и неравномерном шуме или потрескиваниях внутри бака трансформаторы;
ненормальном и постоянно возрастающем нагреве трансформатора при нагрузке, не превышающей номинальную, и нормальной работе устройств охлаждения;
выбросе масла из расширителя или разрыве диафрагмы выхлопной трубы;
течи масла или уменьшении уровня масла ниже уровня масломерного стекла в расширителе.

23 ВОПРОС

Хроматографический анализ газов, растворенных в трансформаторном масле

Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.

Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев.

Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н 2 , ацетилен С 2 Н 2 , этан С 2 Н 6 , метан СН 4 , этилен С 2 Н 4 , окись СО и двуокись СО 2 углерода.

Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен - перегрев активных элементов; этан - термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен - высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода - перегрев и разряды в твердой изоляции обмоток.

С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.

1. Перегревы токоведущих частей и элементов конструкции магнитопровода. Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.

Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.

Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.

2. Дефекты твердой изоляции. Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение СО2/СО, как правило, больше 13; характерными газами с малым содержанием являются водород, метан, этилен и этан; ацетилен, как правило, отсутствует.

При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания - метан и этилен. При этом отношение СО 2 /СО, как правило, меньше 5.

3. Электрические разряды в масле. Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород; характерными газами с малым содержанием - метан и этилен. При искровых и дуговых разрядах основными газами являются водород и ацетилен; характерными газами с любым содержанием - метан и этилен.

После выявления дефекта и его подтверждения не менее чем двумя-тремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.

Если по результатам диагностики трансформатор должен быть выведен из работы, но по каким-то объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.

Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой прямо характеризует глубину физико-химического разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.

Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.

24 ВОПРОС

При внешнем осмотре могут быть установлены некоторые неисправности трансформатора: поверхностное перекрытие; пробой или разрушение изоляторов, ввод, вздутие бака, образовавшееся вследствие механических усилий внутри трансформатора при его аварии; нарушение прочности швов бака или уплотнений, наличие и течи масла; неисправности работы маслоуказателя, сливного крана и другие дефекты.

Трансформаторы являются наиболее сложным оборудованием систем электроснабжения. Ремонт трансформатора, связанный с его разгерметизацией, выемкой и ремонтом активной части, требует высокой квалификации ремонтного персонала, больших материальных и временных затрат.

Для оценки действительного состояния трансформатора при его техническом обслуживании периодически проводятся профилактические проверки, измерения, испытания, диагностирование. При обнаружении явных или прогнозировании развивающихся дефектов, которые могут привести к отказу трансформатора планируется вывод его в ремонт.

Предварительно проводится ряд организационно-технических мероприятий, обеспечивающих четкое выполнение ремонтных работ: подготовка помещения (площадки), грузоподъемных механизмов, оборудования, инструментов, материалов, запасных частей. Кроме того, составляются ведомость объема работ и смета, которые являются исходными документами для определения трудовых и денежных затрат, сроков ремонта, потребности в материалах.

Любой ремонт трансформатора, связанный с разгерметизацией и выемкой активной части относится к капитальному. В зависимости от состояния активной части различают:
капитальный ремонт без замены обмоток;
капитальный ремонт с частичной или полной заменой обмоток, но без ремонта магнитной системы;
капитальный ремонт с заменой обмоток и частичным или полным ремонтом магнитной системы.
Ремонт трансформаторов мощностью до 6300 кВ*А выполняется, как правило, на специализированных ремонтных предприятиях. Ремонт трансформаторов большей мощности, у которых затраты на транспортировку могут превосходить стоимость ремонта, выполняется непосредственно на подстанциях. В этом случае персонал специализированного ремонтного предприятия выезжает к месту установки трансформатора.

По завершению ремонта активная часть трансформатора промывается сухим трансформаторным маслом. Для старого электрооборудования со сроком службы более 25 лет следует использовать интенсивную промывку активной части, добавляя в промывочное масло специальные присадки, обладающие повышенной растворяющей способностью. Это позволяет интенсифицировать процесс выделения из изоляции и активной части трансформатора воды, механических примесей, продуктов старения масла и твердых изоляционных материалов, что положительно сказывается на характеристиках изоляции.

Твердая изоляция обмоток трансформатора обладает гигроскопичностью. В период выполнения ремонтных работ на открытой активной части изоляция обмоток впитывает влагу из окружающей среды. Поэтому по окончании ремонта возникает вопрос о необходимости сушки изоляции обмоток трансформатора.

Трансформаторы, у которых при ремонте выполнялась полная или частичная замена обмоток, подлежат обязательной сушке. Трансформаторы, прошедшие ремонт без замены обмоток, могут быть включены в работу без сушки изоляции при условиях, что:
характеристики изоляции не выходят за пределы нормированных значений;
продолжительность пребывания активной части на открытом воздухе Тоткр при определенной его влажности не превышает значений, приведенных в табл. 1.

Сушка изоляции осуществляется ее нагреванием в вакуумных шкафах, сухим горячим воздухом в специальных камерах, в собственном баке (без масла).

Ремонт вводов. Основные неисправности вводов (рис.4) следующие: трещины и сколы изоляторов, разрушение изоляторов, некачественная армировка и уплотнение, срыв резьбы контактного зажима при неправильном навинчивании и затягивании гайки. При значительных сколах и трещинах ввод заменяется.

Армирование фарфоровых изоляторов начинают с изготовления зажима из медных или латунных прутков соответствующего диаметра и длины; на концах зажима нарезается резьба по размерам заменяемого. На зажим навинчивают стальной или бронзовый колпак и закрепляют его контргайкой. С внутренней стороны колпак с зажимом скрепляют газосваркой. Сварку производят латунью с применением в качестве флюса буры, предварительно прокаленной в течение 3 ч при 700 °С. Качество сварки должно быть проверено. После сварки зажим лудят гальваническим способом и подвергают вторичному испытанию.

Ремонт поврежденных контактных зажимов . Поврежденную резьбу зажимов отрезают ножовкой заподлицо с плоскостью колпачка. Зажим высверливают на толщину тела колпачка (3-4 мм), после чего его можно свободно вынуть и заменить новым. Новый зажим приваривают от верхней плоскости колпачка

Ремонт пробивного предохранителя. После каждого пробоя предохранителя устанавливают новую слюдяную пластинку толщиной 0,25 мм, а контактные поверхности предохранителя тщательно зачитают от образовавшегося нагара.

Ремонт бака. Сравнительно распространенными случаями повреждения бака, вызывающими его течь, являются нарушения сварных швов и недостаточная плотность прокладки между баком и крышкой. Пустой бак очищают от осадков, грязи, промывают и ополаскивают теплым маслом. Проверяют исправность работы спускного крана. Места течи заваривают, предварительно тщательно очистив место сварки от масла и краски и просушив его постепенным и равномерным нагревом паяльной лампой.

Ремонт прокладок. Пришедшие в негодность уплотняющие прокладки заменяют новыми, изготовленными из маслостойкой резины.

Разметку отверстий в прокладках для прохода болтов делают по крышке или фланцу бака. Отверстия выполняют просечкой. Во избежание перекоса крышки дополнительно прокладывают проволочный ограничитель 5 (рис.5).

Ремонт расширителя. Ремонт расширителя (рис.6) чаше всего сводится к промывке его маслом. Но иногда необходимо очищать внутреннюю поверхность расширите ля от ржавчины, которая может быть обнаружена при разборке трансформатора в виде большого скопления крупинок на плоскости верхнего ярма, под отверстием патрубка расширителя или чаще под отверстием выхлопной трубы.

25 ВОПРОС

ЭКСПЛУАТАЦИЯ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ
7.1. ОБСЛУЖИВАНИЕ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ
Электрические соединения в ЭЭС осуществляются в распределительных устройствах (РУ), включающих в себя схемы соединения; измерительные аппараты; устройства защиты от перенапряжения; аппараты, формирующие информационную сеть; коммутационные аппараты; электрические агрегаты; устройства защиты и автоматики. Схемы соединения РУ зависят от их назначения. Схемы подстанций сравнительно просты, а схемы соединения электростанций и объектов, выполняющих роль узловых пунктов сети ЭЭС, значительно сложнее. На таких объектах используются устройства защиты и автоматики, охватывающие большое число присоединений (дифференциальная защита шин, устройства резервирования отказа выключателей и т. п.).
Эксплуатацию РУ осуществляет персонал . Работы, проводимые в электрических установках, связаны с необходимостью выполнения операций с коммутационными аппаратами и вторичными аппаратами РУ и с подготовкой рабочих мест для ремонтов. В больших РУ эти операции весьма сложны. Учитывая высокие требования к точности оперативных переключений, их выполняет персонал, имеющий специальную подготовку, - оперативный персонал. Поддержание электрических устройств в состоянии, пригодном к эксплуатации, производится ремонтным персоналом.
При эксплуатации РУ обслуживаются:
централизованно выездными оперативными бригадами;
при помощи домашнего дежурства;
постоянным оперативным персоналом.
В первом случае объект работает без персонала. Сигнализация о событиях, требующих вмешательства, поступает на диспетчерский пункт. Для их устранения, а также для подготовки рабочих мест ремонтному персоналу на объект выезжает оперативная бригада. Преимущество такого обслуживания заключается в том, что требуется меньшее число работников. Недостатком является обязательное ожидание, так как требуется время на поездку, а иногда и на освобождение оперативной бригады от предыдущего задания.
Во втором случае персонал, живя поблизости от объекта, находится на пассивном дежурстве и прибывает на него при первой необходимости. Учитывая, что в этом случае, как и в первом, обслуживаются объекты, имеющие простую схему коммутации, для лучшего использования рабочего времени персонал выполняет и простые ремонтные работы. Подобное обслуживание имеет определенные достоинства, но вызывает необходимость расположения жилья поблизости от объекта.
В третьем случае, как правило, обслуживаются сложные РУ, являющиеся узловыми пунктами ЭС и определяющие надежность ее работы.
Надежность работы ЭЭС в значительной мере зависит от надежности РУ, которая обусловлена надежностью действия персонала и характеристиками надежности технических устройств.
Наиболее сложные аварии вызываются при обесточении части или всего РУ. Общая статистика причин обесточения РУ приведена в табл. 7.1.
Таблица 7.1. Причины обесточения РУ и их доля в общем числе аварий

Из табл. 7.1 видно, что в 60% всех случаев аварии происходят из-за неправильных действий персонала, а в 40% -из-за ненадежности технических устройств. Число ошибок персонала зависит от сложности и обозримости технических систем, т. е. чем они сложнее и менее наглядны, тем больше ошибок допускает персонал. Стремление к повышению технической надежности приводит к усложнению схем первичной и, главным образом, вторичной коммутации. В результате этого положительный технический эффект уменьшается из-за роста ошибок оперативного персонала. Поэтому проблема повышения надежности действия персонала требует серьезного внимания.


Похожая информация.


Хроматографический анализ газов в масле (ХАРГ) - один из наиболее чувствительных и точных методов оценки состояния маслонаполненного оборудования. Этот вид контроля давно и довольно широко используется в эксплуатации для диагностики состояния измерительных трансформаторов (ИТ) несмотря на то, что требования к выполнению этого анализа не включены в РД . Поскольку до настоящего времени отсутствуют российские нормативы граничного содержания газов в масле нормально работающих ИТ, заключение по результатам анализа в эксплуатации нередко дается на основании зарубежного опыта (Стандарт МЭК ) или российских норм для силовых трансформаторов и вводов РД . Такой подход представляется неправильным и необоснованным.

Поэтому установление граничных концентраций газов в масле работающих ИТ представляется авторам достаточно актуальной задачей. В настоящей статье обсуждаются результаты ХАРГ эксплуатируемых трансформаторов тока (ТТ) звеньевой конструкции типа ТФЗМ и трансформаторов (ТН) типа НКФ.

МЕТОДИКА

Для получения статистически значимых выборок данных авторами статьи был собран большой объем результатов ХАРГ при профилактическом контроле ИТ. В выборках представлены данные об ИТ, эксплуатируемых в различных климатических регионах, в том числе ОАО «Ленэнерго», МЭС Северо-Запада, Центра, Юга, сетевых предприятий Сибири, Урала и Дальнего Востока, Центрального региона. Расчет граничных значений проводился с помощью экспертно-диагностической информационной системы «Альбатрос», разработанной И.В. Давиденко, Уральский Политехнический институт, с программным модулем статистической обработки результатов ХАРГ согласно требованиям РД . В базу данных для расчета включалось по одному результату анализа при профилактическом контроле каждой единицы ИТ.

В отличие от РД – число интервалов для расчета было увеличено с 15 до 50; – в качестве граничных концентраций газового компонента в масле нормально работающих в эксплуатации ИТ рассматривались расчетные значения концентрации, соответствующие уровням интегральной функции распределения F = 0,90 или 0,95. Установленные таким образом значения граничных концентраций оказываются не превышенными у 90 или 95 % общего количества ИТ рассматриваемой группы. Данные, собранные отдельно по классам для каждого типа ИТ, группировались в выборки для расчета граничных концентраций вначале по отдельным предприятиям. Это позволило рассмотреть влияние региональных климатических условий на процессы, происходящие в изоляции, а также таких факторов, как особенности измерительного комплекса и парка оборудования.

Существенных отличиймежду граничными концентрациями для разных предприятий внутри групп по типам и классам ИТ обнаружено не было. Это позволило объединить выборки по предприятиям в каждой группе в одну расчетную выборку. Для подтверждения диагностической ценности установленных граничных концентраций газов были рассмотрены случаи забракованных в эксплуатации и аварийных ИТ с дефектами, известными по результатам разборки. Диагностика состояния по результатам ХАРГ проводилась по методике, включающей различные диагностические критерии, в том числе с использованием граничных концентраций газов. Газ с максимальным отношением измеренного и граничного значений считался основным, остальные газы с отношениями измеренного и граничного значения больше единицы считались газами с высоким содержанием. Вид развивающегося дефекта определялся по сочетанию основного и характерных газов . Полученные диагнозы сопоставлялись с результатами разборки ИТ и/или с результатами измерения других характеристик изоляции.

РЕЗУЛЬТАТЫ

Результаты расчета граничных концентраций для ТТ звеньевой конструкции типа ТФЗМ (старое название ТФНД) 220 и 500 кВ по объединенным выборкам представлены в табл. 1. Как видно из табл. 1, у этих двух выборок граничные значения всех газов довольно близки. (Необходимо отметить, что данные по ТФЗМ-500 имелись лишь для нижних блоков). С учетом того, что типа ТФЗМ-500 выпускаются в двухступенчатом исполнении (2 блока по 220 кВ), то есть конструкция изоляции у них одинакова, эти две выборки были объединены.

Результаты расчета для объединенной выборки 528 единиц представлены в последней строке табл.

1. Результаты расчета граничных значений содержания газов в масле ТФЗМ-110 представлены в табл.

2. У этих ТТ обращают на себя внимание высокие значения граничных концентраций некоторых газов. А именно, граничные концентрации водорода Н2, метана СН4 и этана С2Н6 у ТФЗМ класса 110 кВ на два порядка выше, чем у ТФЗМ классов 220 и 500 кВ, хотя граничные значения остальных газов низкие и близки к ТФЗМ других классов напряжения.

Если учесть, что в обоих случаях речь идет о негерметичной конструкции (со свободным дыханием), то трудно объяснить, почему высокие концентрации имеют место для газов с малой растворимостью в масле: водорода и метана. При этом достоверность результатов анализа не вызывает сомнений, поскольку на тех же предприятиях, на которых получены высокие граничные концентрации газов для ТФЗМ-110, граничные концентрации у ТТ других типов и классов гораздо ниже. Можно предположить, что это явление связано с какими-то особенностями конструкции или недостатками технологии изготовления ТФЗМ 110 кВ. Так, объем масла в ТФЗМ 110 кВ почти в 7 раз меньше, чем в ТФЗМ 220 кВ (сравним соотношение объемов в других конструкциях ТТ соседних классов напряжения. Например, у ТТ типа ТФРМ 330 кВ масса масла меньше, чем у ТФРМ 500 кВ всего в 1,2 раза). Возможно, именно малый объем масла и оказывает влияние на повышение концентраций газов у ТФЗМ 110 кВ, однако это касается только трех газов.

С другой стороны, хотя расчет граничных значений для ТФЗМ 110 кВ был выполнен по статистически значимому количеству единиц (467), работающих на многих предприятиях и в разных климатических регионах, на самом деле число работающих в ФСК и энергокомпаниях ТФЗМ 110 кВ намного больше. Не исключено, что при более широком охвате парка ТФЗМ-110 хроматографическим анализом можно ожидать некоторого снижения этих значений. Этот вопрос требует дальнейшего изучения, поэтому в настоящее время полученные для ТФЗМ 110 кВ граничные значения можно рекомендовать как справочные. Результаты расчета граничных концентраций газов в масле ТН типа НКФ по классам (уровни F = 0,90 и 0,95) представлены для сравнения в табл. 3.

Объемы выборок по классам представлены в единицах ТН, а для классов 220-500 кВ (поскольку это блочная конструкция и пробы масла на анализ берутся из каждого блока) дано и количество блоков 110 кВ. Из табл. 3 видно, что при достаточно представительных объемах выборок граничные концентрации газов у ТН разных классов достаточно близки между собой. Это позволяет объединить их вобщую выборку, тем более с учетом одинаковой конструкции блоков. Результаты расчета граничных значений для суммарной выборки ТН 110-500 кВ типа НКФ объемом 1291 блок (814 единиц) представлены в последней строке табл.3. Следует отметить, что расчетные значения концентраций углеводородных газов для ИТ (кроме ТФЗМ 110 кВ) на уровнях F=0,9 и 0,95 различаются примерно в 2-3 раза, причем они значительно ниже граничных концентраций для , установленных при F = 0,9. В связи с этим авторы считают, что для ТФЗМ 220-500 кВ и НКФ 110-500 кВ следует принять в качестве граничных значения концентраций, соответствующие интегральной функции распределения F = 0,95, по крайней мере, по двум причинам.

Использование расчетных значений концентраций газов в качестве граничных для нормально работающих ИТ предполагает постановку на учащенный контроль всего оборудования, в котором имеет место превышение нормативов даже по одному из газов. Применение граничных концентраций на уровне F = 0,9 привело бы к значительному количеству оборудования, подлежащего учащенному контролю (до 30 %). Учитывая то обстоятельство, что для отбора пробы масла на ХАРГ из ИТ, в отличие от силовых трансформаторов, необходимо их отключение, применение граничных концентраций на уровне F = 0,95 сократит количество необоснованных отключений. Известно, что публикация МЭК-61464 1998 г. рекомендует для трансформаторных вводов использовать в качестве граничных значения на уровне F = 0,95 (такой же поход для ТТ с изоляцией конденсаторного типа принят в Португалии ), что значительно уменьшает число объектов, подлежащих дополнительному контролю.

Расчетные значения концентраций для ИТ (за исключением ТФЗМ 110 кВ) на уровне F = 0,9 близки к пределам обнаружения. Чем ниже измеренная концентрация газа в масле, тем больше погрешность ее определения. Согласно РД , относительная погрешность анализа при содержании газов в масле ниже 10 мкл/л составляет более 50 %. Применение для оценки состояния оборудования результатов анализа с такой погрешностью может привести к отказу в работе, то есть снизить эффективность контроля. ТТ типа ТФЗМ 110 кВ представляют особый случай, для них предлагается использовать граничные концентрации 90 %-ного уровня, как уже отмечалось, в качестве справочных. Если сравнить результаты расчета граничных концентраций 95 %-ного уровня для ИТ типа ТФЗМ 220500 кВ и ТН типа НКФ 110-500 кВ (см. табл. 4), то видно, что у этих двух групп ИТ граничные концентрации близки. Это позволяет объединить их. Результаты расчета для объединенной группы представлены в последней строке табл. 4. Для подтверждения диагностической ценности полученных значений граничных концентраций газов в масле нормально работающих ИТ было проанализировано 12 случаев забракованных в эксплуатации и аварийных ИТ с дефектами, известными по результатам разборки (6 единиц ТТ типа ТФЗМ и 6 единиц ТН типа НКФ).

Рассмотрим два примера отбракованных ТТ типа ТФЗМ 110 кВ, результаты ХАРГ которых представлены в табл. 5. Значения содержания газов, превышающие граничные концентрации, выделены жирным шрифтом. Гистограммы рис. 1 и 2 показывают отношения измеренных значений каждого газа к граничным концентрациям.

Из табл. 5 и рис. 1 видно, что имеет место превышение граничных концентраций газов СН4, С2Н6 и СО2. По характерному составу газов (С2Н6 - основной газ, СН4 - характерный газ с высоким содержанием ), характер развивающегося повреждения диагностируется как слабый нагрев (t ? 300-400 oC), что согласуется и с повышенным содержанием СО2. При разборке ТТ был выявленослабленный контакт на шпильке заземления обмотки низкого напряжения, что подтверждает правильность поставленного диагноза.

Из табл. 5 и рис. 2 видно, что имеет место превышение граничных концентраций газов С2Н2 и С2Н4. По характерному составу газов: С2Н2 - основной газ, С2Н4 - характерный газ с высоким содержанием , характер развивающегося повреждения диагностируется как дуговой разряд. При осмотре выявлен обрыв первичной обмотки от обмоткодержателя, что совпадает с поставленным диагнозом. Приведенные примеры подтверждают, что установленные для ТФЗМ-110 кВ граничные концентрации можно использовать в качестве справочных. Рассмотрим два примера отбракованных ТН типа НКФ 110 кВ. Результаты ХАРГ представлены в табл. 6. Значения, превышающие граничные концентрации, выделены жирным шрифтом. Гистограммы рис. 3 и 4 показывают отношения измеренных значений каждого газа к граничным концентрациям.

НКФ-110 кВ был снят по результатам ХАРГ. Из табл. 6, первая строка, и рис. 3 видно, что содержание газов С2Н4, С2Н6 и С2Н2 превышает граничные концентрации, причем С2Н2 - основной газ, С2Н6 и С2Н4 - характерные газы с высоким содержанием. По результатам ХАРГ можно диагностировать искровой разряд, сопровождающийся нагревом до 300 oC. При обследовании ТН было установлено, что омическое сопротивление нулевого вывода обмотки ВН изменилось более чем на 10 %. При разборке был обнаружен плохой контакт в нижней части обмотки ВН. Таким образом, применение ХАРГ для диагностики позволило своевременно обнаружить дефект.

Пример 4.

НКФ 110 кВ был поставлен на учащенный контроль по результатам ХАРГ, представленным в табл. 6, вторая строка. Из табл. 6 и рис. 4 видно, что содержание С2Н6, СО и СО2 превышает граничные значения, причем С2Н6 и СО2 - основные газы, СО - характерный газ с высоким содержанием. По характер развивающегося повреждения диагностируется как нагрев до 300 oC бумаги и масла. Установлено, что до отбора пробы ТН подвергался феррорезонансным перенапряжениям, следствием которых был нагрев обмотки ВН и усиленное старение изоляции. Приведенные примеры подтверждают диагностическую ценность предложенных нормативных значений и целесообразность использования ХАРГ для оценки технического состояния ИТ. Для сравнения в табл. 7 даны предложения и рекомендации разных стран по граничным для нормально работающих маслонаполненных ИТ и силовых трансформаторов и браковочным концентрациям газов.

1. Установленные для отечественных ИТ граничные концентрации газов в масле значительно ниже рекомендуемых Стандартом МЭК для ИТ и РД для силовых трансформаторов.

2. Граничные концентрации газов в масле для ТТ типа ТФЗМ классов 220 и 500 кВ и для ТН типа НКФ классов 110-500 кВ близки между собой. Проведенные расчеты показали возможность объединения этих групп ИТ. Для них предложены единые нормативные значения граничных концентраций газов на уровне интегральной функции распределения F = 0,95.

3. Граничные концентрации водорода, метана и этана в масле для ТТ типа ТФЗМ-110 кВ по результатам расчета оказались примерно на два порядка выше, чем у остальных ТФЗМ. Они рассчитаны на уровне интегральной функции распределения F = 0,90 и предлагаются в качестве справочных. Вопрос о нормативных граничных концентрациях газов в масле нормально работающих ТФЗМ110 кВ требует дополнительного изучения.

4. Влияния региональных климатических условий на значения граничных концентраций газов в масле ИТ не выявлено.

5. Использование граничных значений для оценки состояния ИТ и своевременного принятия решения о мероприятиях по обслуживанию оборудования повысит надежность эксплуатации. Для обеспечения безаварийной эксплуатации ИТ недостаточно располагать только нормативными значениями граничных концентраций газов в масле.


Необходимо решить еще целый ряд вопросов, в том числе должны быть определены:

Опасные скорости нарастания газов в масле ИТ; периодичность повторного анализа газов в зависимости от уровня содержания и скорости нарастания газов;

Признаки характера повреждения, для чего надо установить связь между результатами ХАРГ и дефектами, выявленными в результате разборки;

Объем дополнительных измерений и эксплуатационных мероприятий в зависимости от характера предполагаемого дефекта;

Метрологические требования к методике проведения хроматографического анализа для оценки состояния измерительных трансформаторов. Все эти вопросы должны быть учтены при разработке РД или отраслевого стандарта.



Новое на сайте

>

Самое популярное